McConnell/Steer

The Good Earth

Introduction to Earth Science

Fourth Edition

McGRAW-HILL EDUCATION INTERNATIONAL EDITION

Good Earth

Introduction to Earth Science

David McConnell

North Carolina State University

David Steer

University of Akron

Contributions by

Catharine Knight

University of Akron

Katharine Owens

University of Akron

THE GOOD EARTH: INTRODUCTION TO EARTH SCIENCE

Published by McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121. Copyright © 2018 by McGraw-Hill Education.

All rights reserved. Printed in the United States of America. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of McGraw-Hill Education, including, but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 LMN 21 20 19 18 17

ISBN 978-1-260-08357-6 MHID 1-260-08357-8 26.3 M13 2018

00077815

All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a website does not indicate an endorsement by the authors or McGraw-Hill Education, and McGraw-Hill Education does not guarantee the accuracy of the information presented at these sites.

Brief Contents

chapter

Introduction to Earth Science 3

chapter 2

Earth in Space 25

chapter 3

Near-Earth Objects 53

chapter 4

Plate Tectonics 75

chapter 5

Earthquakes 105

chapter 6

Volcanoes and Mountains 139

chapter

Rocks and Minerals 173

chapter 8

Geologic Time 209

chapter 9

Weathering and Soils 237

chapter 10

Landslides and Slope Failure 267 napter 11

Streams and Floods 285

chapter 12

Groundwater and Wetlands 315

chapter 13

Oceans and Coastlines 343

chapter 14

The Atmosphere 379

chapter 15

Weather Systems 409

chapter 16

Earth's Climate System 439

chapter 17

Global Change 475

appnedix

Conversion Factors 505

appnedix B

The Periodic Table of Elements 506

appnedix C

Answers to Selected Checkpoint Questions 507

Contents

Preface ix
About the Authors xx

chapter

Introduction to Earth Science

- 1.1 Earth Science and the Earth System 4 Your Introduction to Earth Science 6
- 1.2 The Scope of (Earth) Science 7

 Earth System Basics 7

 Science and Discovery 8

 Tools Used by Earth Scientists 9
- 1.3 Doing Science 10
 From Observation to Hypothesis 10
 Inductive and Deductive Reasoning 10
 From Hypothesis to Theory 11
 The Characteristics of Good Science 12
 An Example of Good Science:
 The Alvarez Hypothesis 14
 Limitations of Science 15
 The Characteristics of Bad Science 16
 An Example of Bad Science:
 Prediction of a Midcontinent
 Earthquake 16
- 1.4 Science and Society 16
 The Role of Earth Science 17
 Protecting Against Natural Hazards 17
 Finding and Sustaining Earth's
 Resources 18
 Protecting the Health of the
 Environment 19
 Ensuring the Future of Human Life 20
 The Anthropocene: A New Time
 on Earth? 21

THE BIG PICTURE 22

chapter 2

Earth in Space 25

- 2.1 Old Ideas, New Ideas 26
- 2.2 Origin of the Universe 28

 Determining the Age and Size of the
 Universe 28

 The Big Bang Theory 31

- 2.3 Stars and Planets 31

 How Stars Formed 32

 How Planets Formed 34
- 2.4 Our Solar System 34
 Characteristics of the Sun 34
 Eight, Nine, or Ten Planets? 37
 Types of Planets 39

Chapter Snapshot: The Solar System 40

- 2.5 Earth, the Sun, and the Seasons 42 Distribution of Solar Radiation 43
- 2.6 The Unique Composition of Earth 45
 Core, Mantle, and Crust 45
 Why Is There Life on Earth? 48

THE BIG PICTURE 51

chapter 3

Near-Earth Objects 53

- 3.1 Chevy Asteroid 54

 The Potential for NEO Impacts 54
- 3.2 Characteristics of Near-Earth Objects 55 Asteroids and Meteorites 55 Comets 57
- 3.3 Impact Features 61

 Crater Characteristics 61
- 3.4 Impact Hazards 64
 An Impact Event 65

Chapter Snapshot:

NEO Impact with Earth 66

3.5 Beware of Flying Rocks 68

Predicting and Preventing Impact

Events 69

THE BIG PICTURE 72

chapter ___

Plate Tectonics 7

4.1 Science and Santa Claus 76

Hey, Good Lookin' 76

- 4.2 Continental Drift 77
 Wegener's Theory 77
- 4.3 Evidence from the Seafloor 80
 Seafloor Topography 80
 Age of the Ocean Floor 82
 Heat Flow, Volcanoes, and
 Earthquakes 82
 Seafloor Spreading Theory 84
 Paleomagnetism 84
- 4.4 Plate Tectonics 87

 Key Layers and Processes 88

 The Process of Plate Tectonics 89

Chapter Snapshot:
Plates of the World 90
Do Other Planets Have Plate
Tectonics? 95

4.5 Plate Boundaries 95
Divergent Plate Boundaries 95
Convergent Plate Boundaries 96
Transform Plate Boundaries 100
Plate Tectonics and Climate 101

THE BIG PICTURE 103

chapter 5

Earthquakes 105

- 5.1 Experiencing an Earthquake Firsthand 106
- 5.2 The Science of Ghost Forests and Megathrust Earthquakes 107
 Evidence from Trees 107
 Evidence from Plate Tectonics 108
 Linking the Evidence to the Orphan
 Tsunami 109
 What These Findings Mean for the
 Future 109
- 5.3 Faults, Earthquakes, and Plate Tectonics 110 Common Features of Faults and Earthquakes 111 Directions of Fault Movement 112 Amounts of Fault Movement 113 Stress and Deformation 113 Where to Expect Earthquakes 114
- 5.4 Seismic Waves and Earthquake Detection 118 Types of Seismic Waves 118 Determining Earthquake Location and Magnitude 120

Seismic Waves and	Earthquake
Warning Systems	s 122

- 5.5 Measurement of Earthquakes 122 Earthquake Magnitude 122 Earthquake Intensity (Modified Mercalli Scale) 124
- 5.6 Earthquake Hazards 126 Ground Shaking 127 Aftershocks 128 Landslides 128 Elevation Changes 129 Liquefaction 129 Tsunami 130

Chapter Snapshot: 2004 Tsunami 132

THE BIG PICTURE 136

chapter 6

Volcanoes and Mountains 139

- 6.1 The Volcano Commandos 140
 The Speedy Lavas of Nyiragongo 141
- 6.2 Magma Viscosity 142
 Viscosity and Heat 143
 Viscosity and Chemical
 Composition 143
 Viscosity and Volcanic Eruptions 144
- 6.3 Magma Sources and Magma Composition 144
- 6.4 The Mount St. Helens
 Eruption 147
 Prior Activity 148
 The May 18 Eruption 149
 How Does Mount St. Helens Compare
 to Other Eruptions? 150
- 6.5 Products of Volcanic Eruptions 152 Airborne Elements 152

Chapter Snapshot: Potential Features of Volcanic Eruption 154 Surface Effects 156

6.6 Volcanoes and Volcanic Landforms 160 Three Classes of Volcanic Cones 160

Other Volcanic Landforms 162

- 6.7 Mountains: Why Are They There? 164 Mountains and Plate Tectonics 164
- 6.8 The Rise and Fall of Mountains and Temperatures 167 Mountains and Climate 169

THE BIG PICTURE 170

chapter

Rocks and Minerals 173

- 7.1 Earth Scientists:
 Nature Detectives 174
 Where Do Bricks Come
 From? 175
- 7.2 Elements and Atoms: The Basic Building Blocks 176Elements 176Atoms 177
- 7.3 Minerals 180
 Mineral Characteristics 180
- 7.4 Igneous Rocks 184

 The Classification of Igneous
 Rocks 185

Chapter Snapshot:
Origin of Rocks 188

- 7.5 Sedimentary Rocks 192
 Clastic Sedimentary
 Rocks 192
 Chemical Sedimentary
 Rocks 195
 Biochemical Sedimentary
 Rocks 196
 Sedimentary Rocks and Fossil
 Fuels 197
- 7.6 Metamorphic Rocks 199Contact Metamorphism 199Regional Metamorphism 200
- 7.7 The Rock Cycle and Mineral Resources 202 The Rock Cycle 203 Mineral Resources 203

THE BIG PICTURE 207

chapter 8

Geologic Time 209

- 8.1 Thinking About Time 210
- 8.2 The History of (Relative) Time 211

 Relative Time 212

Chapter Snapshot:
Geological History of the Grand
Canyon 218
Fossils and Chronology 220

- 8.3 Geologic Time 222

 Evolution of Early Earth 222

 The Geologic Timescale 222

 Mass Extinctions 225
- 8.4 Numerical Time 228
 Radioactive Decay 228
 Half-Lives 229
 Applying Both Relative and Numerical
 Time 230
- 8.5 Rates of Change 232

 Catastrophism 233

 Uniformitarianism 233

THE BIG PICTURE 235

chapter 9

Weathering and Soils 237

- 9.1 The Dirt on Weathering 238
 Weathering of Cultural Sites 238
 Where Does Dirt Come From? 239
- 9.2 Physical Weathering 240
 Unloading 240
 Wedging 241
- 9.3 Chemical Weathering 243

 Dissolution 243

Chapter Snapshot:
Weathering 244
Hydrolysis 247
Oxidation 248
Linking Chemical and Physical
Weathering Processes 249

- 9.4 Biological Weathering and Decay 249 Macroscopic Processes 250 Microscopic Processes 250
- 9.5 Weathering Rates 251

 Rock Composition 251

 Rock Properties 252

 Climate 252

 Weathering at World Heritage

 Sites 253
- 9.6 Soils: An Introduction 256 Soil-Forming Factors 256 Soil Types 258
- 9.7 Soil Erosion and
 Conservation 260
 Erosion by Water and Wind 261
 Effects of Land Use Practices on
 Erosion 262
 Soil Conservation 263

THE BIG PICTURE 265

chapter 10

Landslides and Slope Failure 267

- 10.1 Mass Wasting: The Human Impact 268 The Phenomenon of Mass Wasting 268
- 10.2 Factors Influencing
 Slope Failure 270
 Slope Angle 270
 The Influence of Gravity 270
 The Effects of Water 271
 Case Study: Slope Failure in
 Venezuela 272
 Methods of Stabilizing
 Slopes 274

10.3 Slope Failure Processes 276
Rockfalls 276
Rockslides 277

Chapter Snapshot:
Landslides 278
Slumps 280
Debris Flows and Mudflows 281
Creep 281

THE BIG PICTURE 283

Streams and Floods 285

- 11.1 Humans and Rivers 286

 The Nile River: An Example of Stream
 Impact 286
 - Stream Management 287
- 11.2 The Hydrologic Cycle 288
 The Origin of Streams 289
- 11.3 Drainage Networks and
 Patterns 290
 The Drainage Basin or Watershed 290
 Evolution of Stream Systems 292
 Drainage Patterns 292
- 11.4 Factors Affecting Stream Flow 293 Stream Gradient 293 Stream Velocity 294 Stream Discharge 295
- 11.5 The Work of Streams 296
 Erosion 296
 Transport 297
 Deposition 298

Chapter Snapshot:
Channel Migration in the Mamoré
River 300

11.6 Floods 303

Causes of Floods 303

Estimating Floods: Measuring Stream
Discharge and Stream Stage 305

Determining Recurrence Interval 306

11.7 Flood Control 308

Approaches to Flood Control 308

THE BIG PICTURE 313

chapter 12

Groundwater and Wetlands 315

12.1 Meet Your Drinking Water 316 Where Drinking Water Comes From 316

- A Case of Groundwater Contamination: Woburn, Massachusetts 316
- 12.2 Holes in Earth Materials 318

 Porosity 318

 Permeability 320
- 12.3 Groundwater Systems 321

 Aquifers 323

 Natural Groundwater Budget:
 Inflow Versus Outflow 325

 Consequences of Human Actions 327

Chapter Snapshot: Groundwater 330

- 12.4 A Case Study: The High Plains Aquifer 332
- 12.5 Groundwater Quality 334

 Drinking Yourself to Death, Naturally 334

 Do-It-Yourself Groundwater

 Contamination 335
- 12.6 Introduction to Wetlands 338

 Characteristics of Wetlands 338

 Case Study: The Florida Everglades 339

THE BIG PICTURE 341

chapter 13

Oceans and Coastlines 343

- 13.1 Our Changing Oceans 344

 The Dynamic Nature of Oceans and
 Coastlines 345
- 13.2 Ocean Basins 346
 Sea Level 346
 Bathymetry of the Ocean Floor 346
 A Walk Across the Ocean Floor:
 The Four Major Depth Zones 347
- 13.3 Ocean Waters 350
 Water Chemistry 350
 Water Temperature 352
 Water's Density, Temperature, and
 Depth 353
- 13.4 Oceanic Circulation 355
 Ocean Currents 355
 Coriolis Effect 356
 Continents and Oceanic Circulation 357
 Thermohaline Circulation 358
 The El Niño/Southern Oscillation (ENSO):
 An Example of Earth as a System 358

Chapter Snapshot:	
Global Circula	ation and
Topography	360

- 13.5 Tides 362 Why Tides Occur 362 Tidal Patterns 364
- 13.6 Wave Action and
 Coastal Processes 365
 Wave Motion in the Open Ocean 365
 Effect of the Wind on Ocean
 Waves 366
 Wave Motion Close to Shore 366
 Wave Energy 369
- 13.7 Shoreline Features 370
 The Changing of Coastal
 Landforms 370
 The Sediment Budget 373
- 13.8 Shoreline Protection 374

 Erosion Prevention Strategies 374

 Erosion Adjustment Strategies 376

THE BIG PICTURE 377

chapter 14

The Atmosphere 37

- 14.1 Science and Skydiving 380
- 14.2 Air Evolves 381
 An Atmosphere Evolves 381
- 14.3 Structure and Processes
 of the Atmosphere 383
 Heat Versus Temperature 383
 The Four Layers of the Atmosphere 384
- 14.4 Solar Radiation
 and the Atmosphere 385
 Solar Radiation and the
 Electromagnetic Spectrum 385
 Earth's Energy Budget 386

Chapter Snapshot:

- The Earth's Albedo 388

 14.5 The Role of Water
- 14.5 The Role of Water in the Atmosphere 390 Three States of Water 390 Changing States of Water 391 Humidity 392
- 14.6 Air Pressure, Condensation, and Precipitation 394 Air Pressure and Air Density 394

Effects of Air Pressure on Temperature 395 Adiabatic Lapse Rates 396 Condensation and Cloud Formation 397 Precipitation 397

- 14.7 Clouds and Frontal
 Systems 397
 Cloud Classification 398
 Cloud Formation Mechanisms 399
- 14.8 Winds 401

 The Relationship Between Air Pressure and Wind 401

 Regional Pressure Gradient 402

 Coriolis Effect 403

 Friction 403

 Cyclones and Anticyclones 404

 Wind Energy 405

THE BIG PICTURE 407

chapter 15

Weather Systems 409

- 15.1 The Weather Around Us 410 Facts About Severe Weather 411
- 15.2 The Science of Weather: From Folklore to Forecasting 412

 The First Meteorologists 412

 Communications Developments 412

 Weather Technology Today 413
- 15.3 Air Masses 414
 Source Areas 414
 Types of Air Masses 414
 Modification of Air Masses 415
- 15.4 Midlatitude Cyclones and Frontal Systems 416 Cold Fronts 417 Warm Fronts 419 Occluded Fronts 419
- 15.5 Severe Weather: Thunderstorms and Tornadoes 420 Thunderstorms 420 Tornadoes 423
- 15.6 Severe Weather: Hurricanes 427 Building a Hurricane 428

Chapter Snapshot:
Hurricane Anatomy 430
Looking to the Future 436

THE BIG PICTURE 437

chapter 16

Earth's Climate System 439

- 16.1 Want Ice with That? 440

 Climate Change and the Polar Bear

 Diet 440

 The Consequences of Arctic

 Warming 442
- 16.2 Global Air Circulation 443
 Chapter Snapshot:
 Climate Data 444
 The Nonrotating Earth Model 446
- 16.3 Global Climate Regions 448
 Köppen-Geiger Classification
 System 448
 Climate and the Biosphere 449
 Energy and the Biosphere 451

The Rotating Earth Reality 446

- 16.4 Extreme Climate
 Environments 453
 Cold Climates 453
 Hot Deserts 458
- 16.5 Records of Climate
 Change 460
 Weather Records from
 Instruments 461
 Cultural Records 462
 Short-Term Climate Trends: Annual
 Cycles 463
 Long-Term Climate Trends:
 Abrupt Change and Millennial
 Cycles 466
 Interpreting the Climate
 - Interpreting the Climate
 Record 468
 Intervals and Rates of Climate
 Change 468
 Natural Causes of
- 16.6 Natural Causes of
 Climate Change 470
 Distribution of the Continents 470
 Oceanic Circulation Patterns 471
 Variations in Earth's Orbit 471

THE BIG PICTURE 473

chapter 17

Global Change 475

- 17.1 Alternative Climates, Alternative Choices 476
- 17.2 Ozone and the Stratosphere 478
 The Nature of Ozone 478
 Natural Variations in Ozone
 Concentrations 479
- 17.3 CFCs and Ozone Depletion 480
 The Nature of CFCs 480
 Reductions in Ozone
 Concentrations 480
 Why Does Ozone Become Depleted over
 the South Pole? 480
 Our Ozone Future 481

17.4 Greenhouse Gases and Global Change 482

Chapter Snapshot:

Carbon Cycle 484
The Global Carbon Cycle 486
Carbon Produced by Human
Activity 487
Greenhouse Gas Emissions 487

- 17.5 Modeling Global Climate Change 490 Forcings and Feedbacks 490 Climate Models 492
- 17.6 A Warmer World 493

 Effects of Warmer

 Temperatures 495
- 17.7 What Can Be Done? 498

 International Agreements

 to Improve the Environment 498

Reducing Greenhouse Gas Emissions 499 What Else Can Be Done? 501

THE BIG PICTURE 503

Appendix A 505

Conversion Factors

Appendix B 506

The Periodic Table of Elements

Appendix C 507

Answers to Selected Checkpoint Questions

Glossary 511 Index 519

Additional McGraw-Hill Education International Editions are available in the following subjects:

Accounting Geology and Mineralogy

Agriculture Industrial Arts and Vocational Education

Biological Sciences Management

Business and Industrial Management Management Information Systems

Chemistry Marketing

Chemistry and Chemical Engineering Mathematics

Civil Engineering Mechanical Engineering

Computer Information Technology (CIT) Medicine

Decision Science Meteorology

Economics Physics

Education Political Science

Electrical Engineering Psychology

Electrical Engineering Technology Sociology

Electronics and Computer Science Statistics

Finance Tech and Trade

Geography

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

Cover Credit: ©AlexanderCher/ Getty Images

