DESIGN AND DEVELOPMENT OF A POSTABLE BODY TEMPERATURE REGULATOR

Design Project

JOHN ANDREW A. GARCIA.
MARIELLA G. PANGILINAN

College of Engineering and Information Technology
CAVITE STATE UNIVERSITY
Indang, Cavita

December 2018

DESIGN AND DEVELOPMENT OF A PORTABLE BODY TEMPERATURE REGULATOR

Undergraduate Design Project
Submitted to the Faculty of the
College of Engineering and Information Technology
Cavite State University
Indang, Cavite

In partial fulfilment of the requirements for the degree Bachelor of Science in Electronics Engineering

Design and development of a portable body temperature regulator 536.502 G16 2019 DP-644

JOHN ANDREW A. GARCIA MARIELLA G. PANGILINAN December 2018

ABSTRACT

GARCIA, JOHN ANDREW A. and PANGILINAN, MARIELLA G., Design and Development of a Portable Body Temperature Regulator. Undergraduate Design Project. Bachelor of Science in Electronics and Communications Engineering. Cavite State University, Indang, Cavite. November 2018. Adviser: Michael T. Costa.

The study was conducted March 2018 at Cavite State University, Indang, Cavite to design and develop a portable body temperature regulator. Specifically, it aimed to design and construct a controller unit for the cooling and heating regulator, develop the program for the controller unit, modify the sleeping bag, test and evaluate the performance of the body temperature regulator through pilot testing; and conduct a cost benefit analysis.

The design project was composed of an Arduino Nano which serves as the microcontroller unit, thermoelectric cooler peltier that serve as the cooling and heating elements of the temperature regulator, the temperature sensors for the sensing of body temperature and ambient temperature inside the sleeping bag, and the snail fan for transferring the generated cool air or hot air from the device to sleeping bag. The microcontroller gives the output signal Liquid Crystal Display (LCD). The LCD Display displays the parameters sensed by the temperature sensors. It also has a keypad buttons for the setting the desire ambient temperature inside of the sleeping bag.

The project was tested and evaluated at the second floor of Engineering Science Building of College of Engineering and Information Technology. It was also evaluated by the patients of the Trece Martires City, Cavite to determine the efficiency of the device and its user friendliness.

Based on the results of the evaluation, the project met the given objectives. The system was able to regulate the temperature inside the sleeping bag. The device was also able to prove its functionality, safety, usability, and user-friendliness.

The total cost of the design project was P14, 614.00.

TABLE OF CONTENTS

	Page
APPROVAL SHEET	ii
BIOGRAPHICAL DATA	iii
ACKNOWLEDGMENT	v
ABSTRACT	x
LIST OF TABLES.	xv
LIST OF FIGURES	xvii
LIST OF APPENDIX TABLES.	xx
LIST OF APPENDIX FIGURES	xxii
LIST OF APPENDICES.	xxiii
INTRODUCTION	1
Statement of the Problem	2
Objectives of the Study	3
Significance of the Study	3
Time and Place of the Study	4
Scope and Limitations of the Study	4
Definition of Terms	5
REVIEW OF RELATED LITERATURE	6
METHODOLOGY	19
Materials	19
Hardware Materials	10

Software Materials	22
Miscellaneous Materials	22
Methods	23
Design Considerations	23
Design of Body Temperature Regulator Circuit	24
Fabrication of the Temperature Regulator	29
Development of the Program to Control the System	31
Testing and Evaluation	37
Cost Benefit Analysis	40
RESULTS AND DISCUSSION	41
Principle of Operation	41
Presentation and Analysis of the Design	44
Construction of the Temperature Regulator Program	53
Testing and Evaluation	57
Statistical Analysis of the Design	70
a. Functionality on the Temperature Regulator Evaluation	72
b. Usability of the Temperature Regulator Evaluation	72
c. Safety of the Temperature Regulator Evaluation	73
d. User-Friendliness of the Temperature Regulator	
Evaluation	74
Results of the Technical Evaluation	76
Results of the Evaluation	76
Cost Benefit Analysis	86

LIST OF TABLES

Table		Page
1	Evaluation parameters of the temperature regulator	37
2	Reference for rating the properties of the device	39
3	Mean range weight interpretation	39
4	Comparison of the body temperature sensor readings from thermocouple and from digital Thermometer in °C	58
5	Comparison of the body temperature sensor readings from thermocouple and from digital thermometer in °C;	59
6	Duration of temperature regulator for student 1	61
7	Duration of temperature regulator for student 2	62
8	Duration of temperature regulator for student 3	63
9	Duration of temperature regulator for student 4	64
10	Duration of temperature regulator for student 5	65
11	Duration of temperature regulator for student 6	66
12	Duration of temperature regulator for student 7	67
13	Duration of temperature regulator for student 8	68
14	Duration of temperature regulator for student 9	69
15	Duration of temperature regulator for student 10	70
16	Mean range weight interpretation	72
17	Statements for the functionality of the temperature regulator section	72
18	Functionality on the temperature regulator evaluation summary table	73

19	Statements for the usability of the temperature regulator section	73
20	Usability on the temperature regulator evaluation summary table	74
21	Statements for the safety of the temperature regulator section	74
22	Safety on the temperature regulator evaluation summary table	75
23	Statements for the user-friendliness of the temperature regulator section	75
24	User-friendliness on the temperature regulator evaluation summary table	76
25	Materials cost of the constructed portable body temperature regulator	87
26	Mass production cost per day of the constructed portable body temperature regulator	88
27	Cost benefit analysis of body temperature regulator (Cost)	88
28	Cost benefit analysis of body temperature regulator (Income)	88

LIST OF FIGURES

Figure		Page
1	Body temperature in thermogram	7
2	Typical peltier module depiction and image of the TEC used	12
3	The block diagram of the temperature regulator	27
4	The schematic circuit diagram of the temperature regulator	28
5	The process flow diagram of the temperature regulator	29
6	The top view of the temperature regulator	30
7	The back view of the temperature regulator	30
8	The side view of the temperature regulator	31
9	The isometric view of temperature regulator	31
10	Program system flowcharts of the temperature regulator	31
	a. Initial system flowchart of the temperature regulator	33
	b. Temperature setting flowchart of the temperature regulator	34
	c. Temperature regulator flowchart	35
	d. Temperature regulator flowchart (cont.)	36
11	The LCD display for the skin temperature	43
12	The LCD displays a notification that the body temperature is within the range	44
13	The LCD displays the selection of temperature inside the sleeping bag	44
14	The LCD displays the monitoring of the set teperature, the skin temperature and the ambient temperature	44

15	The top view of the portable body temperature regulator	45
16	The circuit design of the temperature regulator	46
17	TEC used as cooling element of the temperature regulator	47
18	TEC used as heating element of the temperature regulator	47
19	Cascaded muffin fans with heatsink	48
20	Snail fan of the temperature regulator	49
21	Power switch and attached sensors of the temperature regulator	49
22	The isometric view of the temperature regulator	51
23	The side view of temperature regulator	52
24	The sleeping bag for temperature regulator	52
25	Initial system flowchart	54
26	Temperature setting flowchart	55
27	Temperature regulator flowchart	55
	a. Temperature regulator flowchart	55
	b. Temperature regulator flowchart	56
28	The temperature measured during the regulation for cooling mode.	77
29	The temperature measured during the regulation for cooling mode	78
30	The temperature measured during the regulation for cooling mode	7 9
31	The temperature measured during the regulation for cooling mode	80
32	The temperature measured during the regulation for cooling mode	81
33	The temperature measured during the regulation for cooling	

	mode	82
34	The temperature measured during the regulation for heating mode	83
35	The temperature measured during the regulation for heating mode	84
36	The temperature measured during the regulation for heating mode	85
37	The temperature measured during the regulation for heating mode	86

LIST OF APPENDIX TABLES

Appendix Table		Page
1	Body temperature regulator specifications	98
2	The sampled temperature in the evaluation of temperature regulator by set temperature of 22°C	101
3	The sampled temperature in the evaluation of temperature regulator by set temperature of 23°C	102
4	The sampled temperature in the evaluation of temperature regulator by set temperature of 24°C	102
5	The sampled temperature in the evaluation of temperature regulator by set temperature of 25°C	103
6	The sampled temperature in the evaluation of temperature regulator by set temperature of 26°C	103
7	The sampled temperature in the evaluation of temperature regulator by set temperature of 27°C	104
8	The sampled temperature in the evaluation of temperature regulator by set temperature of 28°C	104
9	The sampled temperature in the evaluation of temperature regulator by set temperature of 34°C	105
10	The sampled temperature in the evaluation of temperature regulator by set temperature of 33°C	105
11	The sampled temperature in the evaluation of temperature regulator by set temperature of 32°C	105
12	The sampled temperature in the evaluation of temperature regulator by set temperature of 32°C	106

LIST OF APPENDIX FIGURES

Appendix		Page
1	Arduino nano ATMega328	108
2	Thermoelectric cooler TEC1-12706	108
3	MAX6675 module +K type thermocouple sensor	109
4	12V exhaust fan	109
5	Power supply	110
6	Snail Fan	110
7	20 x 4 LCD display	111
8	DHT22 temperature and humidity sensor	111
9	3 x 4 matrix membrane keypad	112
10	SPDT relay driver	112
11	Buck converter	113
12	Design project making	113
13	Testing of the temperature regulator	114
14	Evaluation of the temperature regulator	114

LIST OF APPENDICES

Appendix		Page
1	Appendix tables	97
2	Appendix figures	107
3	Specification sheets	115
4	Computations	130
5	Program codes	146
6	Ethics review board (ERB) certificate of approval	152
7	Forms	153

DESIGN AND DEVELOPMENT OF A PORTABLE BODY TEMPERATURE REGULATOR

John Andrew A. Garcia Mariella G. Pangilinan

An undergraduate design project submitted to the faculty of the Department of Computer and Electronics Engineering, College of Engineering and Information Technology, Cavite State University, Indang, Cavite, in partial fulfilment of the requirements for the degree of Bachelor of Science in Electronics and Communication Engineering with Contribution No. <u>CEIT 2018-19-1-004</u>. Prepared under the supervision of Engr. Michael T. Costa

INTRODUCTION

One of the most essential requirements for the human body to function properly is having good sleep. It plays a very important role in ensuring the wellness of the human body both physically as well as mentally. Not only does it help maintain our physical and mental health; rather it also helps in maintaining a decent and healthy lifestyle along with ensuring safety from a number of fatal diseases. However, there are instances that ambient temperature while you sleep can actually have a huge effect on the length and quality of your sleep.

One variable that is often overlooked as a powerful tool to help you sleep better is ambient temperature. Getting enough sleep has numerous benefits: it helps your brain function better the next day, keeps your body healthy, and improves your emotional wellbeing. Ambient temperature has a profound effect on sleep. Too hot and you'll wake up sweating. Too cold and you'll shiver yourself awake.