PHYTOCHEMICAL ANALYSIS AMD EMALUATION OF CYTOTOXICITY AMD GENICITY OF Breynia endrogyna L. (BINAHLAM) LEAF EXTRACT

THESIS

CHRISTIAN JOSHUA S. COSTA

College of Arts and Sciences

CAVITE STATE UNIVERSITY

Indens, Cevits

June 2019

PHYTOCHEMICAL ANALYSIS AND EVALUATION OF CYTOTOXICITY AND GENOTOXICITY OF *Breynia androgyna* L. (BINAHIAN) LEAF EXTRACT

Undergraduate Thesis
Submitted to the Faculty of the
College of Arts and Sciences
Cavite State University
Indang, Cavite

In partial fulfillment of the requirements for the degree Bachelor of Science in Biology

Phytochemical analysis and evaluation of cytotoxicity and genotoxicity of breynia 581 634 C82 2019 T-8204

CHRISTIAN JOSHUA S. COSTA June 2019

ABSTRACT

COSTA, CHRISTIAN JOSHUA S. Phytochemical Analysis and Evaluation of Cytotoxicity and Genotoxicity of *Breynia androgyna* L. (Binahian) Leaf Extract. Undergraduate Thesis. Bachelor of Science in Biology major in General Biology. Cavite State University, Indang, Cavite. June 2019. Adviser: Ms. Liwayway P. Taglinao.

A study was conducted to assess the cytotoxicity and genotoxicity of *Breynia* androgyna L. (Binahian) ethanolic leaf extract using *Allium cepa* L. (Onion) test. Phytochemical analysis was performed on the leaf ethanolic extract of *B. androgyna* plant. In accordance, *B. androgyna* extract was diluted into different concentrations of plant extract as the treatment groups together with control groups. Six groups of onion bulbs were submerged into different treatment groups for two days and the morphological effects of the treatment were observed and documented. Onion roots were harvested and fixed for microscopic observation of the mitotic index and chromosomal aberrations.

This study showed that the phytochemical compounds that were present on the B. adrogyna consist of tannins, flavonoids, phenolics, alkaloids and steroids. There is a significant difference on the onion root length when submerged to B. androgyna extract in comparison with the negative control group (p<0.05). Thus, there is a significant inhibition of mitotic activity in the onion group treated with plant extract compared to the negative control (p<0.05). On the other hand, the inhibition of the mitotic activity was highly significant in the 750 μ g/mL and 1000 μ g/mL B. androgyna plant extract. One thousand μ g/mL B. androgyna plant extract decreases mitotic index at 32% thus signifying it as having sublethal effects on an organism. The number of chromosomal aberrations increases as the level of concentration of plant extract increases compared to

the negative control (tapwater). There was statistically significant differences at all the values except for 250 μ g/ml *B. androgyna* extract concentration and 500 μ g/mL *B. androgyna* extract concentration (p<0.05).

Hence, the leaves of *B. androgyna* are commonly utilized by human as food or medicine as revealed by the survey. However, *B. androgyna* plant leaves, if consumed or applied at certain doses (approximately beyond 500 μ g/mL), will induce a cytotoxic and genotoxic effect on an organism.

TABLE OF CONTENTS

	Page	
BIOGRAPHICAL DATA		
ACKNOWLEDGMENT		
ABSTRACT	vi	
LIST OF TABLES	x	
LIST OF FIGURES	xi	
LIST OF APPENDIX FIGURES	xii	
LIST OF APPENDICES	xiv	
INTRODUCTION	1	
Objectives of the Study	3	
Significance of the Study	3	
Time and Place of the Training	4	
Scope and Limitation of the Study	4	
REVIEW OF RELATED LITERATURE	5	
METHODOLOGY	11	
Survey on the Popularity of B. androgyna	11	
Sample Collection	11	
Preparation of Leaf Ethanol Extract	11	
Qualitative Phytochemical Screening of Ethanolic Leaf Extract	12	
Onion Preparation for the Test	12	
Allium cepa Test	12	

Preparation of Slides	14
Microscopy of Root Tips Slide	15
Statistical Analysis	15
RESULTS AND DISCUSSION	16
Survey on the popularity of <i>B. androgyna</i>	16
Phytochemical Analysis	17
Morphological Observation of Allium cepa	21
Microscopic observation of A. cepa root meristimatic cell	24
Mitotic Index of Treatment and Control Groups	27
Observation on Chromosomal Aberration	29
SUMMARY, CONCLUSION AND RECOMMENDATIONS	
Summary	35
Conclusion	37
Recommendations	39
REFERENCES	40
APPENDICES	48

48

LIST OF TABLES

Table		Page
1	Qualitative Phytochemical Screening of <i>B. androgyna</i> Ethanolic Extract	18
2	Average Root Number and Root Length in Control and Treatment Groups	22
3	Mitotic Index in varying Concentration of Plant Extract and Control Groups	28
4	Chromosome and Mitotic Aberrations of Plant Extract and Control Groups	34

LIST OF FIGURES

Figure		Page
1	Graphical Representation of Results from the Survey	17
2	Onion Roots at varying Treatment and Control Groups	23
3	Different Phases of Mitosis	25
4	Mitotic and Chromosomal Aberrations	30

LIST OF APPENDIX FIGURE

Appendix Figure		Page
1	Air-dried leaves of <i>B. androgyna</i> for at least two weeks	72
2	Grinded leaves of <i>B. androgyna</i> after blending	72
3	Removal of debris with the use of strainer	73
4	Powdered leaf maceration using ethanol as solvent	74
5	Filtering of macerated powdered leaf using filter paper	75
6	Weighing of the plant extract after water bath	75
7	Phytochemical analysis of <i>B. androgyna</i> leaf extract	76
8	Results of qualitative phytochemical analysis tests	77
9	Setup for rootlet growing of onions in water	78
10	Different concentrations of B. androgyna extract and control groups	79
11	Slide preparation using squash technique	80
12	Microscopy of onion root tips	81
13	Representative cells of onion root tips at negative control group (Tapwater)	82
14	Representative cells of onion root tips at 250 μg/mL <i>B. androgyna</i> extract	83

LIST OF APPENDICES

Appendix		Page
1	Survey questionnaire	49
2	Results on Statistical Analysis	52
3	Letter of permission for laboratory	59
4	Routing slip	61
5	Ethics Review Board Certificate	63
6	Certification from Statistician	65
7	Certification from English Critic	67
8	Curriculum vitae	69
9	Appendix figures	71

PHYTOCHEMICAL ANALYSIS AND EVALUATION OF CYTOTOXICITY AND GENOTOXICITY OF *Breynia androgyna* L. (BINAHIAN) LEAF EXTRACT

Christian Joshua S. Costa

An undergraduate thesis manuscript submitted to the faculty of the Department of Biological Sciences, College of Arts and Sciences, Cavite State University, Indang Cavite in partial fulfillment of the requirements for the degree of Bachelor of Science in Biology (major in General Biology) with Contribution No. T-CAS-2019-BO20. Prepared under the supervision of Ms. Liwayway P. Taglinao.

INTRODUCTION

Medicinal plants have been greatly used for traditional medicine of many countries for centuries. It is estimated that 80% of the world's population of the world's population still depend on plants for their primary health care (Ekor, 2014). Plants have been recognized for their medicinal value because of the substances they contain that create a physiological action on the human body. Alkaloids, resins, tannins and essential oils are some examples of these substances. However, medicinal plants may have cytotoxic or genotoxic substances as well. Excessive usage of some medicinal plants can cause harmful effects on humans instead of being beneficial (Olowa & Nuñeza, 2013). Insufficiency on information about the cytotoxicity and genotoxicity of medicinal plants that people have been using for ages can lead to the formation of potential mutagenic or genotoxic hazards (Olowa & Nuñeza, 2013; Askin Celik & Aslanturk, 2010). Further