624.16 tn 74 2000

estigation and improvement of severage bystem in cavite state university (phase iv)

JESSIE OLOTEO MONASTRIAL

Callege of Engineering

CAVITE STATE UNIVERSITY

Indona, Cavita

March 2000

INVESTIGATION AND IMPROVEMENT OF SEWERAGE SYSTEM IN CAVITE STATE UNIVERSITY (PHASE IV)

An Undergraduate Design Project Submitted to the Faculty of the Cavite State University Indang, Cavite

In partial fulfillment of the requirements for the degree of Bachclor of Science in Civil Engineering

Investigation and improvement of sewerage system in Cavite State University (Phase 624.16 M74 2000 DP-20

JESSIE O. MONASTRIAL MARCH 2000

ABSTRACT

MONASTRIAL, JESSIE OLOTEO, Cavite State University, Indang, Cavite. March 2000. "INVESTIGATION AND IMPROVEMENT OF SEWERAGE SYSTEM IN CAVITE STATE UNIVERSITY (PHASE IV) ". Design project Adviser Eng'r. Cene Masigla Bago.

The project "Investigation and Improvement of Sewerage System in Cavite state University (phase IV) was conducted and evaluated at the Department of Civil Engineering, Cavite State University, Indang, Cavite in March 2000, to know the present condition of sewerage system at Cavite State University and to lay out the storm and sanitary sewer line. The study also aimed to identify, recommend or suggest solutions to sewerage system problems.

The result of the study showed the lay out of storm sewer and sanitary sewer according to the elevation of the ground. In addition, manholes were also designed based from the design guidelines and criteria. After the conduct of the study, it was found out that Cavite State University needs an improvement for the collection of effluent. Also, collection tank and treatment plant are needed for collecting, transporting and treating of the effluent before it will be discharged.

TABLE OF CONTENTS

	Page
BIOGRAPHICAL SKETCH	iii
AKNOWLEDGMENT	iv
LIST OF TABLES	x
LIST OF FIGURES	хi
LIST OF APPENDIX TABLES	xii
LIST OF APPENDICES.	xiii
ABSTRACT	xiv
INTRODUCTION	1
Objectives of the study	2
Scope and limitations of the study	2
Time and place of the study	3
Importance of the study	3
REVIEW OF RELATED LITERATURE	4
History of sewerage.	4
Sewerage and sewage disposal	4
Sewer, sewage and sewerage	4
Sanitary sewerage and liquid wastes	6
Types of sewer system	7
Sewage characteristics	9
Quantity of sewage	9
Sanitary sewer design	10

Quantity of storm water	11
Design of sewer system	12
Design of storm sewer system	12
Location of street inlets.	12
Drainage areas	12
Sewer pipeline	15
Locating the pipes.	15
Sewer outflow line installation	15
METHODOLOGY	17
Design guidelines	17
Design procedures	18
RESULT AND DISCUSSION	20
Field data	20
Design computation of storm sewer	2.9
Layout of sanitary sewer line	35
Computation of storm sewage quantity	43
Computation of sanitary sewer	45
Cost analysis	47
SUMMARY, CONCLUSION AND	
RECOMMENDATION	48
Summary	48
Conclusion	49
Recommendation	50

BIBLIOGRAPHY	51
APPENDICES	52

LIST OF TABLES

Table		Page	
1.	Computation of elevation	21	
2.	Design computation of storm sewer line	30	
3.	Total length of pipe	32	

LIST OF FIGURES

Figure		Page
1.	Storm sewer layout	34
2.	Sanitary sewer layout	36
3.	Typical drainage layout	37
4.	Detail of pipe trench	38
5.	Manhole plan	39
6.	Detail of curve inlet	40
7.	Detail of manhole	41
8.	Detail of concrete cover and bottom slab	42

LIST OF APPENDIX TABLES

Table		Page
1.	Value of "c" for use in rational formula	53
2.	Value of manning's roughness coefficient "n"	54
3.	Suggested size of septic tanks (m)	55
4.	Trench width dimension	56
5.	Schedule of manhole dimension.	57
6.	Schedule of concrete cover	58
7.	Bottom slab reinforcement	59
8.	Specification	60
9.	Physical property of pipe	61
10.	Applicable chemical solution	62
11.	Average waste water from residential	63
12.	Average wastewater sources flows from	64
	Institutional	65
13.	Average wastewater sources flows from recreational	66
14.	Per capita wastewater flow from conventional	
	Domestic devices	67

LIST OF APPENDICES

		Page
1.	Atlanta spiral pipe specification	67
2.	Revise effluent regulations of 1990, revising	
	And amending the effluent regulations of 1992	70
3.	Specification	73
4.	Detailed estimate	84

INVESTIGATION AND IMPROVEMENT OF SEWERAGE SYSTEM IN CAVITE STATE UNIVERSITY

JESSIE OLOTEO MONASTRIAL

L'An undergraduate design project presented to the faculty of the Department of Civil Engineering, College of Engineering, Cavite State University, Indang, Cavite. In partial fulfillment of the requirements for the degree of Bachelor of Science in Civil Engineering. Prepared under the supervision of Eng'r. Cene Bago. Contribution No. CE-99-2000-358-07

INTRODUCTION

Sewerage is a structure, device, equipment, and appurtenance intended for the collection, transportation, and pumping of sewage and other liquid wastes, but excluding works for the treatment of sewage. It is also a plan or idea for the collection of the removal of sewage from the community.

The latest sewerage system constructed or built at the Cavite State University especially in areas where ladies Dormitory Building, Related Science High school Building, Marcos Building, CED, New Administration Building, Grandstand, Quadrangle, Granary – IIRM Building, CDC, were located need investigation to improve its performance. Proposed buildings like the University Mall, Alumni House, comfort Rooms near Marcos type buildings will also be included in the investigation and improvement of sewerage system.