DISIGN AND DEVELOPMENT OF A SWING SET GENERATOR

Design Project

PAOLO JEHECO F. AURIGUE CARL SHERWIN S. ESPINELI

College of Engineering and Information Technology
CAYITE STATE UNIVERSITY

Indang, Carite

April 2015

DESIGN AND DEVELOPMENT OF A SWING SET GENERATOR

Undergraduate Design Project
Submitted to the Faculty of the
College of Engineering and Information Technology
Cavite State University
Indang, Cavite

In partial fulfillment
of the requirements for the degree
Bachelor of Science in Electrical Engineering

Design and development of swing set generator 621.31 Au6 2015 DP-428

PAOLO JEHECO F. AURIGUE CARL SHERWIN S. ESPINELI April 2015

ABSTRACT

AURIGUE, PAOLO JEHECO F. and ESPINELI, CARL SHERWIN S. Design and Development of Swing Set Generator. Undergraduate Design Project. Bachelor of Science in Electrical Engineering. Cavite State University, Indang, Cavite. April 2015. Adviser Engr. Ronald R. Peña.

The study was conducted from October 2014 to January 2015 at Malvar, Batangas and Brgy. Bancod, Indang, Cavite to design and develop a swing set generator using pendulum motion. Specially, it aimed to: 1. design and construct the swing set; 2. determine the theoretical computations for the swing set power generator; 3. assembly the swing set generator on voltage with and without load, current and power; and 5. conduct cost computation.

The study covered the development and construction of the swing set power generation system, which includes a generator, a 31.2cm diameter pulley, a 5.6cm diameter pulley, one battery system, one inverter, and a charge controller.

Test and evaluation were done with different weights of the riders on the swing. The project was evaluated for a duration of 60 seconds per trial and parameters such as number of swing motions, rotational speed, voltage, current, power output and efficiency were measured. Results of the evaluation showed how the output of the system was affected by the different weights of its rider.

The total cost of the study was P 26,085.

TABLE OF CONTENTS

	Page
BIOGRAPHICAL DATA	iii
ACKNOWLEDGMENT	v
PERSONAL ACKNOWLEDGMENT	vii
ABSTRACT	ix
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF APPENDIX FIGURES	xv
LIST OF APPENDICES	xvi
INTRODUCTION	1
Significance of the Study	2
Objectives of the Study	3
Time and Place of the Study	3
Scope and Limitation of the Study	4
Definition of Terms	4
REVIEW OF RELATED LITERATURE	6
METHODOLOGY	18
Materials	18
Methods	19
RESULTS AND DISCUSSION	24

Principles of Operation	24
Description of the System	25
System Design and Assembly of Swing Set Generator	25
Determination of the Time for One Complete Swing	27
Determination of Pulley Ratio	28
Determination of the Speed of a Generator	29
Determination of Theoretical Power of the Swing Set Generator	29
Generator Specifications	30
Battery Specification	31
Installation and Connection of the System	31
Testing and Evaluation of the Swing Set Power Generator	32
Power Output of the System	40
Cost Computation	41
SUMMARY, CONCLUSION, AND RECOMMENDATIONS	42
Summary	42
Conclusion	43
Recommendations	43
REFERENCES	44
APPENDICES	45

LIST OF TABLES

Table		Page
1	Comparison of actual speed of two pulleys	33
2	Results of evaluation of swing set generator in 60 seconds	35
3	Behaviour of generated voltage and rotational speed of the system with and without load	38
4	Cost computation of the system	41

LIST OF FIGURES

Figure		Page
1	Pendulum	7
2	Swinging motion of a pendulum	11
3	Sewing machine wheel	12
4	Merry-go-round that simultaneously light up school building's bulb	14
5	Human power revolving door powers train station	15
6	Generating electricity with swing sets	17
7	Block diagram of a swing set power generator system	20
8	The working diagram of swing set generator using sketch up pro application	22
9	Flow chart diagram of the system	24
10	Actual swing set generator	26
11	Driving unit	26
12	System case and electronic components	27
13	Generator	30
14	Battery	31
15	Installation and connection of the system	32
16	Comparison on the rotational speed of the small pulley and larger pulley	34
17	The number of swing motion produced from different mass	36
18	Behaviour of rotational speed of the generator to the number of swing motion	37

19	Voltage at no load and with load	38
20	Rotational speed at no load and with load	39
21	Relationship of the rotational speed of the generator and the generated output voltage, current and power of the generator in first trial	39
22	Relationship of the rotational speed of the generator and the generated output voltage, current and power of the generator in second trial.	40

LIST OF APPENDIX FIGURES

Figure		Page
1	Swing Set Power Generator	45
2	Pulley System (Ratio 1: 5.57)	45
3	Charge Controller	46
4	Power Inverter	46
5	Installation of the Swing Set Generator	47
6	Interconnection of the System	47
7	Panel Box of the Generator Interconnected with Electronic Devices	48
8	Weight Gathering for Evaluation	48
9	Different Weight Gathered for Evaluation	49
10	Evaluation of the Project	49
11	Testing of the System	50
12	Tachometer Reading	50
13	Voltmeter Reading	51
14	Ammeter Reading	51

LIST OF APPENDICES

Appendix		Page
1	Figures	44
2	Computations	52
3	Manual of Operation	59
4	Letters	67

DESIGN AND EVALUATION OF A SWING SET GENERATOR

Paolo Jeheco F. Aurigue Carl Sherwin S. Espieli

An undergraduate design project presented to the faculty of the Department of Computer and Electronics Engineering, College of Engineering and Information Technology, Cavite State University, Indang, Cavite in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical Engineering with Contribution No. CEIT-2014-15-130. Prepared under the supervision of Engr. Ronald P. Peńa.

INTRODUCTION

Electricity is very important. It has always been a great factor in making man's life easier. It is always hard to imagine a day without electricity, but in some places, and sometimes there are circumstances that electricity was inevitably unavailable that's why generators were invented. An electric generator is a machine that converts rotary mechanical energy into electrical energy. A generator forces electric current to flow through an external circuit. The mechanical energy may be applied by a turbine steam engine, water falling through a turbine or waterwheel, an internal combustion engine, a wind turbine, compressed air, or any other source of mechanical energy. One example of an alternative source of mechanical energy is the back and forth motion of a swing which demonstrates the physics of a pendulum. A simple pendulum is consist of a relatively massive object hung by a string from a fixed support. It typically hangs vertically in its equilibrium position. The massive object is affectionately referred to as the pendulum