DESIGN AND DEVELOPMENT OF A ROBOTIC FACULTY LOCATOR SYSTEM

Design Project

JAZEL ANNE S. SIERRA BERNADETTE L. FLORES

College of Engineering and Information Technology

CAVITE STATE UNIVERSITY

Indang, Cavite

Cavite State University (Main Library)

DP418

DP 629.8 Si1 2014

October 2014

DESIGN AND DEVELOPMENT OF A ROBOTIC FACULTY LOCATOR SYSTEM

Undergraduate Design Project
Submitted to the Faculty of the
College of Engineering and Information Technology
Cavite State University
Indang, Cavite

In partial fulfillment of the requirements for the degree Bachelor of Science in Computer Engineering

Design and development of a robotic faculty locator system 629 8 St1 2014 DP-418

JAZEL ANNE S. SIERRA BERNADETTE L. FLORES October 2014

ABSTRACT

FLORES, BERNADETTE L. and SIERRA, JAZEL ANNE S. "Design and Development of a Robotic Faculty Locator System." Undergraduate Design Project. Bachelor of Science in Computer Engineering. Cavite State University. Indang, Cavite. October 2014. Adviser: Poinsettia A. Vida

The Design and Development of a Robotic Faculty Locator System was conducted at Cavite State University, Indang, Cavite from December 2013 to October 2014. Generally, the study aimed to develop a robotic faculty locator system. Specifically, it aimed to design and construct the robot, develop the software to control the system, to integrate the system, test and evaluate the system; and conduct cost computation.

The designed robotic faculty locator focused on giving the location of a faculty member within the vicinity of the second floor of the Engineering Science building of Cavite State University at Indang, Cavite. The project used ATmega328 microcontroller that control the operation of the entire system. The robot was composed of one US-100 ultrasonic sensor and two three-channel line sensor. The robot was driven by motors which enable to turn and to move forward. The testing and evaluation of the robot was made based on the ability to perform a certain task. The total cost computation of the project amounted to P18, 092.00.

TABLE OF CONTENTS

	Page
BIOGRAPHICAL DATA	ii
ACKNOWLEDGMENT	iii
ABSTRACT	vi
TABLE OF CONTENTS	vii
LIST OF FIGURES	ix
LIST OF TABLES.	X
LIST OF APPENDIX FIGURES	xi
INTRODUCTION	1
Significance of the Study	2
Objectives of the Study	3
Time and Place of the Study	3
Scope and Limitation of the Study	4
Definition of Terms	4
REVIEW OF RELATED LITERATURE	6
MATERIALS AND METHODS	
Materials	12
Dry Charge Electron Battery NS40	12
Driver parts	12
High Temperature H-Bridge Motor Driver	12
Toyota Denso 159200-2681C Wiper Motor	12
Sensors	

Three- Channel Line Follower sensor	12
US-100 Ultrasonic Sensor	12
LED monitor and touchscreen panel	13
ATmega328	13
Laptop	13
Power inverter	13
Miscellaneous materials	13
Methods	14
Design and construct the robot	14
Software development	18
Integrate the system	23
Testing and evaluation	26
Cost computation	26
RESULTS AND DISCUSSION	27
Presentation and Analysis of the Design	27
Software Description	28
Testing and Evaluation	28
Cost Computation of the Materials	46
SUMMARY, CONCLUSION, AND RECOMMENDATION	48
Summary	48
Conclusion	49
Recommendation	49
REFERENCES	50
APPENDICES	51

LIST OF FIGURES

Figure		
1	The head of the robot	15
2	Body of the robot	16
3	Base of the robot	17
4	Components of the robotic faculty locator system	19
5	Photographic view of the robotic faculty locator system	20
6	Program flowchart of the robotic faculty locator system	21
7	Block diagram of the robotic faculty locator system	24
8	Schematic diagram of the microcontroller	25

LIST OF TABLES

Table		Page
1	Performance of the robot to reach its destination	31
2	Performance of the robot to reach its home base	36
3	Performance of the robot to reach its destination (in sec)	39
4	Performance of the robot to reach its home base (in sec)	42
5	Prices of materials for the robot faculty locator system.	46

LIST OF APPENDIX FIGURES

Figure		Page
1	Guizduino Microcontroller Board Based on Atmega328	52
2	High Temperature H-Bridge Motor Driver	53
3	US -100 ultrasonic sensor	54
4	Three-channel line sensor	55
5	Layout of the microcontroller	56
6	Schematic diagram of the three channel line sensor	57
7	Schematic diagram of the motor driver	58

DESIGN AND DEVELOPMENT OF A ROBOTIC FACULTY LOCATOR SYSTEM

Jazel Anne S. Sierra Bernadette L. Flores

An undergraduate thesis manuscript submitted to the faculty of the Department of Computer and Electronics Engineering, College of Engineering and Information Technology, Cavite State University, Indang, Cavite in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Engineering with contribution No. CEIT-2014-15-015. Prepared under the supervision of Ms. Poinsettia A Vida.

INTRODUCTION

One common problem of a student searching for schedules of a faculty member is checking the posted schedules room by room. In some cases, if the posted schedules are not updated, the student tends to begin searching from first floor to fourth floor of the building. For freshmen students these might seem confusing. To lessen such event, a student needs better reliable source of information such as a faculty locator system.

Mostly, faculty locator system provides information about the schedules including class schedule and other extra activity of a faculty member. These give more understanding of schedules and location of the faculty member.

On the other hand, the technology nowadays is aiming at robotics. Robots are one of the helpful machines which give assistance to human and make work more productive. When properly programmed, it provides fast information.