UTILIZATION OF POLYTHYLEME TEREPHTHALATE (PET) BOTTLES AS BINDER FOR MAKING BRICKS

THESIS

KAISTIME JOY Y. OCAMPO JOREN A. PAMPLONA

College of Engineering and Information Technology

CAVITE STATE UNIVERSITY

Indang, Cavite

April 2015

UTILIZATION OF POLYETHYLENE TEREPHTHALATE (PET) BOTTLES AS BINDER FOR MAKING BRICKS

Undergraduate Thesis
Submitted to the Faculty of the
College of Engineering and Information Technology
Cavite State University
Indang, Cavite

In partial fulfillment of the requirements for the degree Bachelor of Science in Civil Engineering

Utilization of polyethlene terephthalate (PET) bottles as binder for making brick: 666_Oc1_2015

KRISTINE JOY V. OCAMPO JOREN A. PAMPLONA

April 2015

ABSTRACT

OCAMPO, KRISTINE JOY V. and PAMPLONA, JOREN A., Utilization of Polyethylene Terephthalate (PET) Bottles as Binder for Making Bricks. Undergraduate Thesis. Bachelor of Science in Civil Engineering. Cavite State University. Indang, Cavite. April 2015. Adviser: Engr. Larry E. Rocela

The main objective of the study was to determine if Polyethylene Terephthalate (PET) Bottles can be used as a binder for making bricks. Specifically, it aimed to study the physical and mechanical properties of bricks made with melted PET bottles as its binder.

Different tests were performed in evaluating the mechanical properties of the innovated product. These tests include compressive strength analysis, water absorption, efflorescence, structure, soundness, and hardness test. The cost of brick per piece was also determined in the study.

With respect to physical properties, all bricks produced by utilizing PET bottles as its binder appears to be light brown in color on its exterior surface but the interior after being examined was light grey.

With respect to mechanical properties, all bricks produced by utilizing PET bottles as its binder passed the minimum requirement of 3.45 MPa or 500 psi for compressive strength of non-load bearing masonry units. In terms of water absorption, bricks had a notable result of less than 1%. Other properties of bricks were attained making it a good quality brick.

With respect to cost, the bricks produced by utilizing PET bottles as its binder has a relatively close cost when compared to commercial brick (8 ½" x 4" x 2") which costs Php 20.00.

TABLE OF CONTENTS

	Page
BIOGRAPHICAL DATA	iii
ACKNOWLEDGMENT	v
ABSTRACT	x
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF APPENDIX FIGURES	xv
LIST OF APPENDICES	xvii
INTRODUCTION	1
Statement of the Problem	2
Objectives of the Study	2
Significance of the Study	3
Scope and Limitation of the Study	3
Time and Place of the Study	4
REVIEW OF RELATED LITERATURE	5
MATERIALS AND METHODS	26
Materials	26
Tools and Equipment	26
Procurement of Materials	26
Preparation of Materials	28
Preparation of Mold	28

Brick Making	28
Determination of Physical Properties	29
Determination of Mechaical Properties	29
Determination of Cost	31
RESULTS AND DISCUSSION	32
Physical Properties of the Bricks	32
Compressive Strength of the Bricks	32
Water Absorption of the Bricks	37
Efflorescence	41
Structure	41
Soundness	42
Hardness	42
Cost Analysis	42
SUMMARY, CONCLUSION, AND RECOMMENDATIONS	46
Summary	46
Conclusion	47
Recommendations	49
REFERENCES	50
APPENDICES	51

LIST OF TABLES

Table		Page
1	Treatment 1 compressive strength	33
2	Treatment 2 compressive strength	33
3	Treatment 3 compressive strength	34
4	Treatment 1 water absorption	37
5	Treatment 2 water absorption	37
6	Treatment 3 water absorption	38
7	Efflorescence of bricks	41
8	Cost of materials	42
9	Treatment 1 cost of brick per piece	43
10	Treatment 2 cost of brick per piece	43
11	Treatment 3 cost of brick per piece	44

LIST OF FIGURES

Figure		Page
1	Preparation and properties determination of bricks	27
2	Bar graph showing the compressive strength of bricks in MPa	35
3	Line graph showing the difference between average compressive strengths of bricks per treatment	36
4	Bar graph showing water absorption of bricks	39
5	Line graph showing the difference between the average water absorption percentages of bricks per treatment	40
6	Line graph showing the difference between cost per brick made from each treatment	45

LIST OF APPENDIX FIGURES

Appendix		Page
Figure 1	Shredded PET bottles	53
2	Sand and tin cans	54
3	Cooking oil	55
4	Drying of sand	56
5	Weighing of shredded PET bottles	57
6	Weighing of dry sand	58
7	Measuring 50 ml of cooking oil	59
8	Mixing of shredded plastic and dry sand	60
9	Spreading of cooking oil on the container	61
10	Transferring of mixed plastic and sand to the container	62
11	Melting of plastic and sand mixture	63
12	Mixing of melted plastic and sand mixture	64
13	Mixture on liquid state	65
14	Mixing of mixture while cooling	66
15	Treatment 1 removed from the container	67
16	Treatment 2 removed from the container	68
17	Treatment 3 removed from the container	69
18	Brick cutting	70
19	Treatment 1 bricks after cutting	71
20	Treatment 2 bricks after cutting	72

21	Treatment 3 bricks after cutting	73
22	Compressive strength analysis of bricks	74
23	Recording of compressive strength analysis results	75
24	Weighing of bricks before immersing on water	76
25	Immersing of bricks on water for 24 hours	77
26	Wiping off traces of water from the brick before weighing	78
27	Weighing of bricks after immersing on water for 24 hours	79
28	Structure analysis of bricks	80
29	Hardness test of bricks	81
30	Soundness test of bricks	82

LIST OF APPENDICES

Appendix		Page
1	Computations	83
	Compressive strength of T ₁	84
	Compressive strength of T ₂	87
	Compressive strength of T ₃	90
	Average compressive strength of T_1	93
	Average compressive strength of T ₂	93
	Average compressive strength of T ₃	94
	Water absorption of T ₁	95
	Water absorption of T ₂	96
	Water absorption of T ₃	98
	Average water absorption of T ₁	100
	Average water absorption of T ₂	100
	Average water absorption of T ₃	101
	Computation of gas consumption cost per minute	102
	Computation of labor cost	103
2	Compressive strength test results	104
3	Forms	109

UTILIZATION OF POLYETHYLENE TEREPHTHALATE (PET) BOTTLES AS BINDER FOR MAKING BRICKS

Kristine Joy V. Ocampo Joren A. Pamplona

An undergraduate thesis manuscript submitted to the faculty of the Department of Civil Engineering, College of Engineering and Information Technology, Cavite State University, Indang, Cavite in partial fulfillment of the requirements for the degree of Bachelor of Science in Civil Engineering with Contribution No. <u>CEIT-2014-15-025</u> Prepared under the supervision of Engr. Larry E. Rocela.

INTRODUCTION

The use of plastic has now become very controversial because of the major environmental impact it is having. The problem with plastic is that it isn't biodegradable and is being overused in an unsustainable manner. We use plastic for a lot of things like packaging, transporting, manufacturing, etc., but do we ever stop to think about what happens to the plastic after we're done using it, or where it ends up? The 'out of sight, out of mind' philosophy is very prevalent when it comes to a lot of environmental issues, especially the issue with plastic.

Polyethylene Terephthalate (PET Bottles) is one of the many kinds of plastic that is hard to recycle. It takes great amount of energy to recycle the plastic bottles by melting it down. Plastic usually degrade in the process and often can't be used for food-grade products again. The researchers think of possible ways in which the PET bottles may be