DEVELOPMENT OF MACSSE. POROTIC HOUSEHOLD ONLINE. SECURITY SURVEILLANCE EQUIPMENT

THESIS

EARL GERALD M. AVILLA MELVIN A. MALACAD MARK RONIEL C. MIRANDA JOHN DAVID D. TORRES

College of Engineering and Information Technology

CAVITE STATE UNIVERSITY

Indang, Cavite

DEVELOPMENT OF RHOSSE: ROBOTIC HOUSEHOLD ONLINE SECURITY SURVEILLANCE EQUIPMENT

Undergraduate Thesis
Submitted to the Faculty of the
College of Engineering and Information Technology
Cavite State University
Indang, Cavite

In partial fulfillment
of the requirements for the degree
Bachelor of Science in Information Technology

Development of rhosse 629.8 D49D 2019 T-8730

EARL GERALD, M. AVILLA MELVIN A. MALACAD MARK RONIEL C. MIRANDA JOHN DAVID D. TORRES June 2019

ABSTRACT

AVILLA, EARL GERALD M., MALACAD, MELVIN A., MIRANDA, MARK RONIEL C. and TORRES, JOHN DAVID D. Development of RHOSSE: Robotic Household Online Security Surveillance Equipment. Undergraduate Thesis. Bachelor of Science in Information Technology. Cavite State University, Indang, Cavite. June 2019. Adviser: Mr, Mark Philip M. Sy.

RHOSSE is an alternative for an expensive IP Cameras. It can capture photos, record videos and record sound. It has a mobile application that serves as the remote controller. It has two modes, the offline mode which uses local host address and online mode which uses a web server. The study was conducted from April 2018 and was completed on May 2019. The research and development of the study was made and conducted at Cavite State University - Main Campus with the same time period. The related literature of the study was compiled through the use of books and existing studies from the library.

The researchers used iterative model to show and describe the quality and functionality of the design. The iterative model is considered as appropriate since the process is cyclic of prototyping, testing, analyzing, and refining. The researchers created a plan about the components or hardware that might present in their study. They drew a blueprint of the structure of RHOSSE, they measured all the components to make a specific position to be placed inside the case. They installed an Operating System, Linux in the Raspberry PI, this is performed to point out the different codes using Python. They also developed a mobile application using Android Studio and assembled all the corresponding components to build RHOSSE. They researchers tested the mobile

application remote controller to RHOSSE and aims to be implemented in different houses. This will strengthen the security of households.

The researchers evaluated a total of 100 respondents, consists of 90 for non-technical respondents composed of IT students and parents or guardians, and 10 for technical respondents, composed of IT professionals in the department of Information Technology. The price of RHOSSE compared to IP cameras is less because RHOSSE costs only a total price of P8,600.00 without installation price, while the other IP cameras like QUBE WIRELESS NVR CCTV Kit 8Ch and 4Ch costs a total price of P33,999.00 with installation and P15,999.00 with installation and the complete hikvision 8 channel with 2MP indoor and outdoor CCTV costs P35,099.00 without installation. Which means the price of RHOSSE is less than the other IP cameras. The researchers highly suggest to upgrade the current power source and camera for a better performance.

TABLE OF CONTENTS

	Page
BIOGRAPHICAL DATA	ii
ACKNOWLEDGEMENT	vi
ABSTRACT	viii
TABLE OF CONTENTS	x
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF APPENDIX FIGURES	xiv
LIST OF APPENDIX TABLES	xv
LIST OF APPENDICES	xvi
INTRODUCTION	1
Statement of the Problem	2
Objectives of the Study	4
Conceptual Framework	4
Significance of the Study	5
Time and Place of the Study	6
Scope and Limitation of the Study	6
Definition of Terms	7
REVIEW OF RELATED STUDIES	9
Related Studies	22
METHODOLOGY	24
Materials	24

Methods	24
Population, Sample size and Sampling Technique	27
Instrumentation	28
Statistical Treatment	28
System Architecture	30
RESULTS AND DISCUSSION	32
Requirements and Gathering and Analysis	32
System Design	33
Research Instruments	45
System Evaluation	45
System Testing	54
SUMMARY, CONCLUSION AND RECOMMENDATIONS	
Summary	55
Conclusion	56
Recommendations	57
REFERENCES	58
APPENDICES	60

LIST OF TABLES

Γable		Page
1	Price comparison of RHOSSE vs IP camera	33
2	Mean score for functionality of the system from the technical evaluation	46
3	Mean score for reliability of the system from the technical evaluation	47
4	Mean score for usability of the system from the technical evaluation	48
5	Mean score for efficiency of the system from the technical evaluation	48
6	Mean score for maintainability of the system from the technical evaluation	49
7	Mean score for portability of the system from the technical evaluation	50
8	Mean score for user-friendliness of the system from the technical evaluation	51
9	Summary of evaluation for technical evaluation	51
10	Mean score for functionality of the system from the non-technical evaluation	52
11	Mean score for reliability of the system from the non-technical evaluation	53
12	Mean score for usability of the system from the non-technical evaluation	53
13	Summary of evaluation for non-technical evaluation	54

LIST OF FIGURES

Figure		Page
1	Conceptual Framework	5
2	Iterative Model Process	25
3	System Architecture	31
4	Screenshot of the login page	34
5	Screenshot of the home page	35
6	Screenshot of the menu tab	36
7	Screenshot of the user manual	37
8	Screenshot of the configuration module	38
9	Screenshot of the offline and online configuration	39
10	Jumper wire	40
11	Raspberry Pi 3	41
12	L293D motor driver	42
13	RHOSSE charger	42
14	DC motor	43
15	RHOSSE wheel	43
16	Pin connection of RHOSSE	44

LIST OF APPENDIX FIGURES

Appendix Figure		Page
1	Fishbone diagram for expensive IP cameras	61
2	Fishbone diagram for fixed view of CCTV cameras	61
3	Fishbone diagram for difficulty to access CCTV cameras	62
4	Survey result for the 1st question of the survey questionnaire	63
5	Survey result for the 2 nd question of the survey questionnaire	63
6	Survey result for the 3 rd question of the survey questionnaire	64
7	Survey result for the 4 th question of the survey questionnaire	64
8	Survey result for the 5 th question of the survey questionnaire	65
9	Survey result for the 6 th question of the survey questionnaire	65
10	Survey result for the 7 th question of the survey questionnaire	66
11	Survey result for the 8 th question of the survey questionnaire	66
12	Survey result for the 9 th question of the survey questionnaire	67
13	Survey result for the 10 th question of the survey questionnaire	67
14	Survey result for the 11th question of the survey questionnaire	68
15	Survey result for the 12 th question of the survey questionnaire	68
16	Gantt Chart for software and hardware development	69
17	Battery life consumption test result	69
18	Storage consumption test result	70

LIST OF APPENDIX TABLES

Appendix Table		Page
1	Frequency distribution of the technical evaluation based on functionality of the system	71
2	Frequency distribution of the technical evaluation based on reliability of the system	71
3	Frequency distribution of the technical evaluation based on usability of the system	71
4	Frequency distribution of the technical evaluation based on efficiency of the system	71
5	Frequency distribution of the technical evaluation based on maintainability of the system	72
6	Frequency distribution of the technical evaluation based on portability of the system	72
7	Frequency distribution of the technical evaluation based on user-friendliness of the system	72
8	Frequency distribution of the non-technical evaluation based on functionality of the system	72
9	Frequency distribution of the non-technical evaluation based on reliability of the system	73
10	Frequency distribution of the technical evaluation based on usability of the system	73

LIST OF APPENDICES

Appendix		Page
1	Survey/ Evaluation Questionnaire	74
2	Line Item Budget	78
3	Unit Testing	80
4	Integration Testing	85
5	Letter for Evaluation	90
6	Sample accomplished software technical evaluation sheet	92
7	Sample accomplished software non-technical evaluation sheet	95
8	Sample source code	98
9	Forms, Certificates and other Appendices	101

DEVELOPMENT OF RHOSSE: ROBOTIC HOUSEHOLD ONLINE SECURITY SURVEILLANCE EQUIPMENT

Earl Gerald M. Avilla Melvin A. Malacad Mark Roniel C. Miranda John David D. Torres

An undergraduate thesis manuscript submitted to the faculty of the Department of Information Technology, College of Engineering and Information Technology, Cavite State University, Indang, Cavite in partial fulfillment of the requirements for the degree Bachelor Science in Information Technology with Contribution No. CEIT 2018-19-2-252. Prepared under the supervision of Mr. Mark Philip M. Sy.

INTRODUCTION

In today's era of modern technology. People are gradually learning to adapt technologies in different ways, so it is expected for a person to depend on technology to simplify everyday life. So why are we depending on technology? If there's no technology, the people may always be burden in works or get tired.

In security, technology is critical to enhancing security. Without cameras, detectors and alarms, businesses would be unable to identify threats and respond appropriately. For instance, setting specific algorithms for CCTV cameras such as signaling an alarm if an individual is hanging around a certain area for too long or being able to analyze and identify unusual or unexpected event will all help detect threatening incidents before they even happen.