COMPUTER AIDED INSTRUCTION ON COMPUTER ARCHITECTURE WITH ASSEMBLY LANGUAGE

SPECIAL PROBLEM

JEROME B. NAZARENO '

COLLEGE OF ENGINEERING AND INFORMATION TECHNOLOGY CAVITE STATE UNIVERSITY Indang Cavite

COMPUTER AIDED INSTRUCTION ON COMPUTER ARCHITECTURE WITH ASSEMBLY LANGUAGE

Undergraduate Special Problem
Submitted to the Faculty of the
Cavite State University
Indang, Cavite

In partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science

Computer aided instruction on computer architecture with assembly language 001.6 N23 2002 SP-2438

JEROME B. NAZARENO April 2002

ABSTRACT

NAZARENO, JEROME B. Computer Aided Instruction on Computer Architecture with Assembly Language. Undergraduate Design Project. Bachelor of Science in Computer Science. Cavite State University, Indang, Cavite. April 2002. Adviser. Mr. Marlon A. Diloy.

The study was all about a Computer Aided Instruction on Computer Architecture with Assembly Language. It covers the topics on Design Methodology, Processor Organization, Input-Output Systems, Introduction to Assembly Language and i80x86 Family of Microprocessor. A randomized set of questions was provided in each chapter to evaluate student's comprehension regarding the topics. It also automatically stores the result of the examination into the student database.

The researcher found out that the use of interview is one of the most important data gathering tools. The researcher also used the library materials like books, magazine, and thesis.

The programming language used for the software development was Visual Basic Version 6.0. The study followed the paper prototyping paradigm in developing the software. It included steps such as creating the product's quick design, documenting the products specification based on the requirements, planning the software process, describing the project modules and how each module works, translating the detailed design modules into code, combining the modules, testing if the whole program functions correctly, and preparing the documentation to aid future developers toward maintenance or enhancement of the software.

TABLE OF CONTENTS

	Page
BIOGRAPHICAL DATA	iii
ACKNOWLEDGMENT	iv
ABSTRACT	v
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF APPENDICES	хi
INTRODUCTION	1
Importance of the Study	2
Objectives of the Study	3
Time and Place of the Study	3
Scope and Limitation of the Study	3
Definition of Terms	5
Technical Terms	5
Operational Terms	6
REVIEW OF RELATED LITERATURE	7
Local Studies	7
Foreign Studies	8
MATERIALS AND METHODS	10
Materials	10
Methods	10

RESULTS AND DISCUSSIONS	16
Paper Prototyping Paradigm	17
Software Testing	18
Software Evaluation	19
Evaluation of the Study	33
Evaluation of the Software Product	34
SUMMARY, CONCLUSION AND RECOMMENDATION	45
Summary	45
Conclusion	46
Recommendation	46
BIBLIOGRAPHY	47
APPENDICES	48

LIST OF TABLES

Table		Page
1	Breakdown of respondents	20
2	Result of the survey for the study	21
3	Result of the evaluation of the software product	22

LIST OF FIGURES

Figure		Page
1	Sample Hierarchical Input Process Output Chart	11
2	Sample Input Process Output Chart	12
3	Paper prototyping diagram	13
4	Results of question number 1	23
5	Results of question number 2	24
6	Results of question number 3	25
7	Results of question number 4	26
8	Results of question number 5	27
9	Results of question number 6	28
10	Results of question number 7	29
11	Results of question number 8	30
12	Results of question number 9	31
13	Results of question number 10	32
14	Results of question number 1	35
15	Results of question number 2	36
16	Results of question number 3	37
17	Results of question number 4	38
18	Results of question number 5	39
19	Results of question number 6	40
20	Results of question number 7	41
21	Results of question number 8	42

22	Results of question number 9	43
23	Results of question number 10	44

LIST OF APPENDICES

١	appendix		
	Α	HIPO and IPO Chart	49
	В	Program Listing	96
	С	Sample Outputs	120
	D	Sample Questionnaires	124
	E	Contents of the Software Design	127
	F	User's Manual	130

COMPUTER AIDED INSTRUCTION ON COMPUTER ARCHITECTURE WITH ASSEMBLY LANGUAGE^{1/2}

Jerome B. Nazareno

^{1/}An undergraduate special problem manuscript submitted to the faculty of the Department of Information Technology, College of Engineering and Information Technology, Cavite State University, Indang, Cavite in partial fulfillment of the requirements for graduation with the degree of Bachelor of Science in Computer Science with Contribution No. CoS 2001-2002-434-40. Prepared under the supervision of Mr. Marlon A. Diloy.

INTRODUCTION

Computer is said to be a computing device used mainly in computation. But in the present day, it is used for very large scale of business and contributing innovation to science and technology. It can perform diagnosis about a specific problem, offers real image, present animation and graphics, and unique method of sharing data and information.

When time flies, the life of man shortens but the computer's appearance and innovation are still evolving and continuing into a more sophisticated and powerful tool that man ever created. The modern and high technology computers that make a daily routine of person become more fascinating and advantageous to this present times. Like a Computer Aided Instruction, a software that serves not only as an educational program design but also as a teaching tool. CAI programs used tutorial, drills, and question-and-