ON THE WATER DISTRIBUTION SYSTEM MANAGEMENT AT CANTES STATE UNIVERSITY

WILFRED GRUESO JAYIER

CAVITE STATE UNIVERSITY

Indung, Cavity

March 2000

A STUDY ON THE WATER DISTRIBUTION SYSTEM MANAGEMENT AT CAVITE STATE UNIVERSITY

An Undergraduate **DESIGN PROJECT**Submitted to the Faculty of the **CAVITE STATE UNIVERSITY**Indang, Cavite

In partial fulfillment of the requirements for the degree of Bachelor of Science in Civil Engineering

A Study on the water distribution on system management at Cavite State 624.16 J32 2000 DPs1

WILFRED GRUESO JAVIER March 2000

ABSTRACT

Javier, Wilfred Grueso, Cavite State University, Indang, Cavite, March 2000. A STUDY ON THE WATER DISTRIBUTION SYSTEM MANAGEMENT AT CAVITE STATE UNVERSITY. Adviser Engr. Manuel Marero.

The study was conducted at the Cavite State University in Indang, Cavite from October to March 2000. Specifically, it aimed to design a system of zone or cluster of tank which will provide high water pressure to the high storey buildings in the university, and to determine the volume requirements, size of tanks, system pressure, design period, water demand, pump discharge and others.

The results of the study showed that the present water requirements of the university was supplied by a deep well driven by a 20 horse power submersible motor and gravity feed spring having a mean discharge 1.82 liters per second. The combined discharge of the two water sources was inadequate to provide the needs of the university to sustain its long time operation. So with the proper design of cistern tank, sufficient water pressure will satisfy the water demand of the university.

Detailed estimates provide the total cost for materials and cost of labor of the tank proposed.

TABLE OF CONTENTS

	PAGE
BIOGRAPHICAL SKETCH	iii
ACKNOWLEDGEMENT	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF APPENDIX TABLES	viii
ABSTRACT	ix
INTRODUCTION	
Importance of the Study	2
Objectives of the Study	2
Time and Place of the Study	3
Scope and Limitation of the Study	3
REVIEW OF RELATED LITERATURE	4
MATERIALS AND METHODS	
University Map	11
Cistern Tank	32
Design and Computation	33
DISCUSSION OF RESULTS	
Height of the Building and the Proposed Tank	35
Estimation of Design Population	35
Volume Requirement	39
Total Dynamic Head Loss	30

Total Number of Fixture Per Building/Size of Pipes	42
Size of Tank	45
Pump Discharge	45
Water Power	46
Specification and Estimated Cost	46
SPECIFICATION	50
DETAILED ESTIMATES (Sunken Tank)	53
PLAN A (2 x 2 x 1.5 – 2 sets)	58
PLAN B (2 x 2 x 2 – 2 sets)	59
PLAN C (3 x 3 x 2 – 5 sets)	60
PLAN D (3.5 x 4 x 3 – 3 sets)	61
PLAN E (4 x 4 x 4 – 2 sets)	62
Total Estimated Cost	62
SUMMARY, CONCLUSION AND RECOMMEDATION	
Summary	63
Conclusion	64
Recommendation	64
LITERATURE CITED	65
APPENDICES	67
CONVERSION TABLE	73

LIST OF TABLES

TABLE	PAGE
A	Height of Tank & Building
В	Estimation of Design Population
C	Volume Requirement (per cluster) 40
D	Total Dynamic Head
Е	Total Number of Fixtures
F	Size of Tank
G	Pump Discharge
Н	Water Power

LIST OF FIGURES

FIGURE	PAGE
1-A	University Map 12
1-B	New Administration Building
2	CDC Building
3	Old Engineering Building
4	Languages & Humanities Building
5	BioSci. Builiding
6	BioTech. Building
7	Food Research and BioSci. Building
8	TED Building
9	Gymnasium
10	Union Building
11	New Library Building
12	Pinazo Training Center
13	New Engineering Building
14	Old Administration Building
15	Animal Science Building
16	Vet. Med. Building
17	Infirmary 29
18	Guest House 30

19	Main Dormitory	31
20	Cistern Tank (Detailed Section)	33
21	Cistern Tank (Parts)	34

LIST OF APPENDIX TABLES

TABLE		PAGE
1	Average daily water consumption demand	68
2	Fixture unit values	69
3	Probability of simultaneous use of Fixtures	69
3-1	(GPM) on 10 mm Ø Galvanized iron or Plastic Pipe	69
3-2	(GPM) on 13 mm Ø Galvanized iron or Plastic Pipe	70
3-3	(GPM) on 20 mm Ø Galvanized iron or Plastic Pipe	70
3-4	(GPM) on 25 mm Ø Galvanized iron or Plastic Pipe	70
3-5	(GPM) on 32 mm Ø Galvanized iron or Plastic Pipe	71
3-6	(GPM) on 38 mm Ø Galvanized iron or Plastic Pipe	71
3-7	(GPM) on 50 mm Ø Galvanized iron or Plastic Pipe	71
4	Capacity of Rectangular Water Tanks (gal./ft.) of Height	72

A STUDY ON THE WATER DISTRIBUTION SYSTEM MANAGEMENT AT CAVITE STATE UNIVERSITY

WILFRED GRUESO JAVIER

¹/ An undergraduate design study presented to the faculty of College of Engineering, Cavite State University, Indang, Cavite in partial fulfillment of the requirements to the degree of Bachelor of Science in Civil Engineering (BSCE), Contribution No. 4-99-200-316-11nder the supervision of Engr. Jaime Q. Dilidili.

INTRODUCTION

Educational institutions like Cavite State University (CvSU) with growing populations and increasing water requirements often face water supply problems. Work must be planned, financed, designed, and constructed in time to meet rising water demands. The problems are particularly acute in buildings where water demand is high. Typical of such buildings are the high-storey buildings located on higher grounds of the university.

Ground resources in the campus are adequate for large – scale development. However, the groundwater has to be pumped from deep well before it can be used. The present water requirements of the university is supplied by a deep well driven by a 20 hp submersible motor and a gravity-feed spring having a mean discharge of 1.82 liters per second. The combined discharge of the two water sources is inadequate to provide the needs of the university to sustain its long-term operation.