DESIGN AND CONSTRUCTION OF A BLADELESS WIND POWER SYSTEM

THESIS

ARCHIE O. GARCIA
JEROME ANTHONY F. PAYO

College of Engineering and Information Technology

CAVITE STATE UNIVERSITY

Indang, Cavite

DESIGN AND CONSTRUCTION OF A BLADLESS WIND POWER SYSTEM

Undergraduate Thesis
Submitted to the Faculty of the
College of Engineering and Information Technology
Cavite State University
Indang, Cavite

In partial fulfillment
of the requirements for the degree of
Bachelor of Science in Electrical Engineering

ARCHIE O. GARCIA
JEROME ANTHONY F. PAYO
April 2014

ABSTRACT

GARCIA, ARCHIE O. and PAYO, JEROME ANTHONY F. Design and Construction of a Bladeless Wind Power System. Undergraduate Design Project. Bachelor of Science in Electrical Engineering. Cavite State University, Indang, Cavite. Adviser Engr. Efren R. Rocillo.

A study on the Design and Construction of a Bladeless Wind Power System was conducted to integrate the lessons acquired in the Electrical Engineering program. The study aimed to: determine the wind speed in Cavite State University, Naic, Cavite; determine the appropriate size of generator to be used, design roller, air duct, charge controller and inverter; design and construct bladeless wind power system; test and evaluate the system; and conduct cost analysis.

The study covered the design and construction of the bladeless wind power system that has been evaluated based on the factors affecting the power generation and performance of the study such as time, distance from the shoreline where the study was installed, and the height from the ground. It was found out that at time frame from 13:00 to 19:00, 20 feet to 30 feet from the shore line, and 8 feet from the ground, the device was at its 100 percent power generation.

The bladeless wind power system showed significant amount of potential in terms being an alternative source of energy because wind is the cleanest and the cheapest of all the options available. Since the roller of the system was concealed and protected by the air duct, the system was able to avoid the production of hazard to the environment such as killing of migratory birds and noisy nasty sound unlike the traditional type of wind turbine, without compromising the power output.

Based on the results of the study, the proponents recommended the national agencies and other researchers to align their interest in strategic assessments and funding adhered to the development of renewable sources of energy which can eventually help our economy.

The total cost of the study was P 48, 650.00.

TABLE OF CONTENTS

	Page
BIOGRAPHICAL DATA	iii
ACKNOWLEDGMENT	v
ABSTRACT	ix
LIST OF TABLES	xiii
LIST OF FIGURES	xv
LIST OF APPENDIX TABLES	xvii
LIST OF APPENDIX FIGURES	xviii
LIST OF APPENDICES	xix
INTRODUCTION	1
Significance of the Study	2
Objectives of the Study	3
Time and Place of the Study	4
Scope and Limitation	4
Definition of Terms	4
REVIEW OF RELATED LITERATURE	6
MATERIALS AND METHODS	24
Materials	24
Direct current generator	24
Frame of air duct	24

Battery	24
Direct current to alternating current inverter	24
Charge controller	24
Roller	25
Anemometer	25
Miscellaneous	25
Methods	26
Data gathering	26
Determining the appropriate generator size of generator	26
Design the roller, air duct, charge controllers, and inverter	28
Assemble/construct of the bladeless wind power system	31
Testing and evaluating of power output/energy produced	33
Cost analysis of the bladeless wind power system	34
RESULTS AND DISCUSSION	36
Description of the System	36
Determined wind speed and wind direction in Cavite State University-Naic, Cavite	37
Generator Size and Efficiency	39
Designed and Assembled Roller for the Wind turbine	40
Designed and Assembled Air Duct, Charge Controller, and Inverter for the	47

Assembly and Construction of the Bladeless Wind Power System	47
Testing and Evaluating of Power Output	50
Cost Computation	61
SUMMARY, CONCLUSION, AND RECOMMENDATIONS	63
Summary	63
Conclusion	64
Recommendations	65
REFERENCES	66
A DDENITICE S	68

LIST OF TABLES

Table		Page
1	Wind speed in Cavite State University, Naic, Cavite Campus (January 2014)	37
2	Annual wind speed in Naic, Cavite (January to December 2013)	39
3	Preliminary testing and evaluation in a controlled environment	50
4	Actual parameters output versus time (February 6, 2014)	52
5	Actual parameters output versus height (February 6, 2014)	52
6	Actual parameters output versus distance (February 06, 2014)	53
7	Actual parameters output versus time (February 07, 2014)	56
8	Actual parameters output versus height (February 07, 2014)	56
9	Actual parameters output versus distance (February 07, 2014)	. 57
10	Average power output per hour summary	. 60
11	Cost of materials	61
12	Cost and return analysis of wind generator	62

LIST OF FIGURES

Figur	e	Page
1	Betz Limit	12
2	Power content of a wind system	15
3	The bladeless wind power system	33
4	Annual wind speed in Naic, Cavite (January to December 2013)	38
5	Computation of the roller	41
6	Actual roller	42
7	Computation of the air duct	43
8	The air duct	43
9	The charge controller	45
10	Charge controller circuit diagram	46
11	The inverter	47
12	Testing and evaluation site	48
13	Installation of the wind turbine generator	49
14	Interconnection of the system	50
15	Parameters versus time (day 1)	54
16	Parameters versus height (day 1)	56
17	Parameters versus distance (day 1)	56
18	Parameters versus time (day 2)	58
19	Parameters versus height (day 2)	58
20	Parameters versus distance (day 2)	59

21	Power behavior	per da	/	6	(

LIST OF APPENDIX TABLES

Appendi Table	X	Page
1	Wind Speed in Cavite State University - Naic Campus (January 2014)	. 73
2	Preliminary testing and evaluation in a controlled environment	. 74
3	Actual Parameters Output versus Time (February 6, 2014)	74
4	Actual Parameters Output versus Height (February 6, 2014)	75
5	Actual Parameters Output versus Distance (February 6, 2014)	75
6	Actual Parameters Output versus Time (February 7, 2014)	76
7	Actual Parameters Output versus Height (February 7, 2014)	76
8	Actual Parameters Output versus Distance (February 7, 2014)	77
9	Average Power Output per Hour Summary	77

LIST OF APPENDIX FIGURES

Appendix Figure		Page
1	Wind speed data gathering (day 1)	70
2	Wind speed data gathering (day 2)	70
3	Wind speed data gathering (day 3)	71
4	Anemometer	71

LIST OF APPENDICES

Appendix		
1	Pictures of wind speed data gathering	69
2	Tables	72
3	Computations	78
4	Installation Manual	88
5	Letters	98

Archie O. Garcia Jerome Anthony F. Payo

An undergraduate design project manuscript submitted to the faculty of Department of Computer and Electronics Engineering, College of Engineering and Information Technology, Cavite State University, Indang, Cavite in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical Engineering with Contribution No.______. Prepared under the supervision of Engr. Efren R. Rocillo.

INTRODUCTION

Wind power has been around since time immemorial. It is widely used in navigation, irrigation, water pumps and agriculture. Wind arises from variations in atmospheric pressure in different parts of the world. Wind power can captured this energy by using windmills or wind turbines that slows down the speed of the air, transferring power to the rotation of the blades (Goodall, 2008).

The Philippines is one of the countries in Asia that is heavily dependent on fossil fuel imports for energy consumption. However, due to the unabated increase in fuel prices, environmental pollution and the possible exhaustion of available resources, searching for cheaper, cleaner, greener and more sustainable sources of energy is becoming increasingly important and highly demanded these days. One of the most conventional renewable sources of energy is the wind power generator (Garcia, 2012).