632.951 Ar1 2008

51

FIELD EVALUATION OF FENOS ASOSC AGAINST TOMATO FRUIT WORMS Helicoverga armigera (Hubaet) NCCTULDAE: LEPIDOPTERA

THESIS

JAMAICAO, ARAPE NIÑALYN N. HERNANDEZ

College of Arts and Sciences

CAVITE STATE UNIVERSITY

Indang, Cavite

April 2008

FIELD EVALUATION OF FENOS 480SC AGAINST TOMATO FRUIT WORMS Helicoverpa armigera (Hubner) NOCTUIDAE: LEPIDOPTERA

Undergraduate Thesis
Submitted to the Faculty of the
Biological Sciences Department
Cavite State University

In partial fulfillment of the requirements for the degree of Bachelor of Science in Biology

Field evaluation of Fenos 480SC against tomato fruits worm Helicoverpa armigera 632.951 Ar1 2008 T-3768

JAMAICA O. ARAPE NIÑALYN N. HERNANDEZ April 2008

ABSTRACT

ARAPE, JAMAICA OBISCURO and HERNANDEZ, NIÑALYN NUÑEZ "Field Evaluation of Fenos 480SC against Tomato fruit worms, Helicoverpa armigera (Hubner) Noctuidae: Lepidoptera" Undergraduate Thesis. Bachelor of Science in Biology, Cavite State University, Indang Cavite. April 2008. Dr. Josefina R. Rint.

The study was conducted to evaluate the effectiveness, of Fenos 480SC on the insect pests and the level of damage in tomatoes; to evaluate the efficacy of Fenos 480SC insecticide against fruit worms and other lepidopterous insects in tomato; to determine the most effective dose rate of Fenos 480SC against the target insect pests; and to compare the efficacy of different dose rates of Fenos 480SC with Selecton against insect pests of tomato.

A barren area in Daine, Indang Cavite was used in the study. Five treatments were used, T1- untreated plants, T2- treatment plants with 0.8g Fenos 480SC, T3- treatment plants with 1.6g Fenos 480SC, T4- treatment plants with 2.4g Fenos 480SC and T5-treatment plants with 32ml Selection 500SC.

In terms of effectiveness of pesticides against fruit worms before treatments, T2, (0.8g Fenos 480 SC) and T4, (2.4g Fenos) were the most effective, while among the after treatments T5, (Selection) was the most effective.

For the mean count of fruits before treatment, T2, (0.8g Fenos 480 SC) was the highest with 1281.8 fruits were in after treatment, T1, (untreated plants) was the highest.

For total harvested fruits, untreated plants has the highest fruits harvested compared to all treatments with pesticides.

The untreated plants had the highest rate of fruit worms infestation. All the plants treated with insecticides were able to control the fruits by 98.99 %.

Harvest of fruits was not affected by the treatment of insecticides. Fenos 480 SC at 1.6g dosages had the highest weight of fruits from fruit worm pests.

TABLE OF CONTENTS

BIOGRAPHICAL DATA	i
	iii
ACKNOWLEDGEMEN1	
ABSTRACT	V
LIST OF TABLE	vii
LIST OF FIGURES	viii
LIST OF APPENDIX TABLE	x
LIST OF APPENDIX FIGURES	viii
INTRODUCTION	1
Statement of the Problem	2
Objectives of the Study	2
Importance of the Study	2
Scope and Limitation	3
Time and Place of the Study	3
REVIEW OF RELATED LITERATURE	4
Tomato Pests in the Philippines	5
Selectron 500SC (Propenopos)	7
Fenos 480SC (Flubendiamide)	7
Benefits of Using Pesticides	8
Pests Control Strategy	8
Insecticides for Tomatoes	8

METHODOLOGY	10
Materials	10
Field Preparation	10
Tomato Seedlings	10
Cultural Management	11
Treatment Application	12
Crop Protection	13
Monitoring	13
Data Gathered	13
Data Analysis	13
RESULTS AND DISCUSSION	15
Insect Pests of Tomato	15
Test on significance of means (before treatment)	24
Test on significance of means (after treatment)	25
Blossom end rot	27
Fruit Harvests	30
Fruit worm- infested harvests	32
Weight of Harvested Fruits	33
Cost and Return Analysis	35
SUMMARY, CONCLUSION AND RECOMMENDATION	37
Summary	37
During	

Conclusions	38
Recommendation	39
BIBLIOGRAPHY	40
APPENDICES	42

LIST OF TABLES

Table	Title	Page
1	Weekly mean percent of fruit worm infestation at one day before pesticides application	25
2	Weekly mean percent of fruit worm infestation two days after pesticide application	27
3	Weekly mean percent of blossom end rot one day before pesticide application	27
4	Weekly mean percent of blossom end rot infestation two days after pesticide application	29
5	Weekly counts of harvested fruits	30
6	Weekly counts of marketable fruits	32
7	Weekly counts of harvested fruits infested with fruit worms	33
8	Weekly weight of harvested fruits after the application of pesticides	34
9	Weekly weight of marketable fruits after the application of pesticide	34
10	Weekly weight of fruit infested with fruit worms from twenty plants per plot	35
11	Cost and Return Analysis	35
12	Analysis on effectively Level of tested Insecticides	36

LIST OF FIGURES

Figure		Page
1	Tomato plants during their vegetative stage	12
2	Mean count of plants infested with leaf miner	15
3	Mean percent of tomato fruits with fruit worm before treatment at 69 DAT	16
4	Mean percent of tomato fruits with fruit worms after treatment at 72 DAT	17
5	Mean percent of tomato fruits with fruit worms before treatment at 76 DAT	18
6	Mean percent of tomato fruits with fruit worms after treatment at 79 DAT	18
7	Mean percent of tomato fruits with fruit worms before treatment at 84 DAT	19
8	Mean percent of tomato fruits with fruit worms after treatment at 86 DAT	20
9	Mean percent of tomato fruits with fruit worms before treatment at 91 DAT	20
10	Mean percent of tomato fruits with fruit worms after treatment at 93 DAT	21
11 ,	Mean percent of tomato fruits with fruit worms before treatment at 98 DAT	22
12	Mean percent of tomato fruits with fruit worms after treatment at 100 DAT	22
13	The trends in the degree of fruit worm infestations at one day before and two days after application of insecticides at weekly intervals	24

14	Mean percent of blossom end rot one day before treatment	28
15	Mean percent of blossom end rot two days after treatment	29
16	Mean counts of harvested fruits after treatment	31
17	Mean counts of marketable fruits after treatment	32
18	Mean counts of harvested fruits infested with fruit worms after treatment	33

APPENDIX TABLE

Figure	Title	Page
1	Mean percent of tomato fruit worms infestation one day before treatment at 69 DAT	. 43
2	Mean percent of tomato fruit worms infestation two days after treatment at 72 DAT	44
3	Mean percent of tomato fruit worms infestation one day before treatment at 76 DAT	45
4	Mean percent of tomato fruit worms infestation two days after treatment at 79 DAT	46
5	Mean percent of tomato fruit worms infestation one day before treatment at 84 DAT	47
6	Mean percent of tomato fruit worms infestation two days after treatment at 86 DAT	48
7	Mean percent of tomato fruit worms infestation one day before treatment at 91 DAT	49
8.	Mean percent of tomato fruit worms infestation two days after treatment at 93 DAT	. 50
9	Mean percent of tomato fruit worms infestation one day before treatment at 98 DAT	51
10	Mean percent of tomato fruit worms infestation two days after treatment at 100 DAT	. 52
11	Mean percent of tomato blossom end rot infestation one day before treatment at 69 DAT	. 53
12	Mean percent of tomato blossom end rot infestation two days after treatment at 72 DAT	. 54
13	Mean percent of tomato blossom end rot infestation one day before treatment at 76 DAT	. 55

14	Mean percent of tomato blossom end rot infestation two days after treatment at 79 DAT	6
15	Mean percent of tomato blossom end rot infestation two days after treatment at 86 DAT	7
16	Mean percent of tomato blossom end rot infestation one day before treatment at 91 DAT 58	8
17	Mean percent of tomato blossom end rot infestation two days after treatment at 93 DAT	9
18	Mean percent of tomato blossom end rot infestation one day before treatment at 98 DAT 6	0
19	Mean percent of tomato blossom end rot infestation two days after treatment at 100 DAT	1
20	Counts of marketable fruit from twenty plants per plot 6	2
21	Weight harvested fruits after the application of pesticide 6	3
22	Weight of marketable fruits after the application of pesticide 6	4
23	Weight of fruit infested with fruit worms from twenty plants per plot	5

LIST OF APPENDIX FIGURE

Table	Title	Page
1	Seedlings of tomato plants on the seed tray before transplanting	67
2	Field preparation	67
3	Field lay out of tomato plantation	68
4	Tomato plants infested with leaf miners	68
5	Tomato stem damaged by a cricket	69
6	Tomato plants infested with blossom end rot	69

FIELD EVALUATION OF FENOS 480SC AGAINST TOMATO FRUIT WORMS Helicoverpa armigera (Hubner) NOCTUIDAE: LEPIDOPTERA

JAMAICA OBISCURO ARAPE NIÑALYN NUÑEZ HERNANDEZ

An undergraduate thesis manuscript submitted to the faculty of the Department of Biological Sciences, College of Arts and Sciences, Cavite State University, Indang Cavite in partial fulfillment of the requirements for the degree of Bachelor of Science in Biology with Contribution No. <u>T- CAS- 2008-B2009</u> Prepared under the supervision of Dr. Josefina R. Rint.

INTRODUCTION

Fenos 480SC, Flubendiamide, is a newly introduced insecticide in the Philippines. The product has obtained conditional registration for application in cabbage and eggplant. It is a fast acting and long lasting insecticide offering farmers a broad spectrum control of lepidopterous insect pests. It is safe to beneficial insects and shows no cross resistance, (Klausener, 2006). However, there is a need to test this pesticide on tomato plants. Similarly, Selectron 500SC is an insecticide against lepidopterous pest, trips, aphids, and mites depending on the type of crop and pest. It is recommended at the rate of 1.0 to 1.5 liter of formulated product per hectare. The treatment is repeated as necessary to maintain and control the pest.