EFFECT OF DIFFERENT LEVELS OF GA 3 ON RICE GRAIN DEVELOPEMENT AND QUALITY

THESIS

ROSALINDA P DIQUIT

Department of Plant Science

DON SEVERING AGRICULTURAL COLLEGE

Indang, Cavits

April 1001

THE EFFECT OF DIFFERENT LEVELS OF GA3 ON RICE GRAIN DEVELOPMENT AND QUALITY

A Thesis Report

Presented to the Faculty of the

Don Severino Agricultural College

Indang, Cavite

In Partial Fulfillment

of the Requirements for the Degree of

Bachelor of Science in Agriculture

(Major in Agronomy)

The Effect of different levels of GA3 on rice grain development and quality 633.18 D62 1991

ROSALINDA P. DIQUIT

April 1991

ABSTRACT

DIQUIT, ROSALINDA P., Don Severino Agricul-tural College, Indang, Cavite, April 1991, "Effect of Different Levels of GA, on Rice Grain Development and Quality." Adviser: Dr. Vicente G. Lontoc.

The study, "Effect of Different Levels of GA3 on Rice Grain Development and Quality" was conducted from September to December 1990 at Bucal 1, Maragondon, Cavite. The study aimed to find out the best level of GA3 to be applied to IR 72 and to determine the effect of GA3 on grain development and quality of rice.

A Completely Randomized Design with four treatments and three replications was used in this study. The treatments used were as follows: T_1 - (Control), T_2 - 10 ppm GA_3 , T_3 - 15 ppm GA_3 , and T_4 - 30 ppm GA_3 .

Based from the results of the studies, plants sprayed with GA₃ solution gave a better performance as compared to the untreated one of the control. GA₃ at the 30 ppm (Treatment 4) proved to be best concentration as regards the height of the plants, number of tillers, weight of 100 grains and total dry matter yield, although it was not significantly different with Treatment 3 (15 ppm GA₃). The other treatments, T₂ = 10 ppm GA₃, however, produced better results as compared to Treatment 1 (control).

TABLE OF CONTENTS

							Page
BIOGRAPHICAL DATA			•		•		iii
ACKNOWLEDGMENT			•	•	•		iv
ABSTRACT				•		•	vi
LIST OF TABLES						•	ix
LIST OF FIGURES				•			x
INTRODUCTION							1
Importance of the Study							
Objectives of the Study					•	•	2
Time and Place of the Study	• •	•	•	•	•	•	3
REVIEW OF RELATED LITERATURE .	• •	•	•	•	•	•	3
MATERIALS AND METHODS	• •	•	•	•	•	•	4
	• •	•	•	•	•	•	8
Materials	• •	•	•	•	•	•	8
Methods	• •	•	•	•	•	•	8
Soil sterilization		•	•	•	•	•	8
Experimental layout		•	•	•	•	•	8
Raising seedlings		•	•	•			9
Transplanting		•	•	•	•	•	9
Watering			•		•		9
Fertilization		٠		۰			10
Gibberellic acid application							
Weed control							10
							10
Disease and insect control .			•	•			10

LIST OF TABLES

Table		Page
1	Average Plant Height in Centimeters	16
2	Average Number of Tiller per Plant	20
3	Average Number of Panicle per Hill	23~
4	Average Number of Filled Grains per Panicle	25
5	Percentage of Unfilled Grain	27
6	Grain Weight of 100 Seeds	29
7	Grain Yield	32
8	Total Dry Matter Yield	34

LIST OF FIGURES

Figure		Page
1	Average Height of Rice Plant at Maturity as Affected by Different Levels of GA3	17
2	Average Number of Tillers per Plant as Affected by Different Levels of GA3	21
3	Average Weight of 100 Grains in Grams as Affected by Different Levels of GA3	30
4	Total Dry Matter Yield as Affected by Different Levels of GA3	35
5	Experimental Field Layout	41
6	General View of the Experiment	42
7	Representative Samples Taken from Each Treatment	43

THE EFFECT OF DIFFERENT LEVELS OF GA3 ON RICE GRAIN DEVELOPMENT AND QUALITY1

рÀ

ROSALINDA P. DIQUIT

la Thesis report presented to the faculty of the Don Severino Agricultural College, Indang, Cavite in partial fulfillment of the requirements for graduation with the degree of Bachelor of Science in Agriculture (BSA), major in Agronomy. Contribution No. P.S. 91008-001. Prepared in the Department of Plant Science under the supervision of Dr. Vicente G. Lontoc, Adviser.

INTRODUCTION

Rice (Oryza sativa, Linn.) is one of the leading cereal crops in the world and is the principal food of about more than half of the world population. It is the basic food of the inhabitants of the tropical regions with humid climate.

Rice is also a major item in the budget of most consumers and changes in price have immediate effect on wages and cost of production. Since rice is the staple food of the Filipino, there is a need of having continuous study on the improvement of its production (Mears, 1974). Many researchers showed that plant