A MOTORIZED AND MECHAMICALLY OPENATED PURITABLE SIEVE SHAMER MAGRINE:

JOHN H. CALAMIUNG

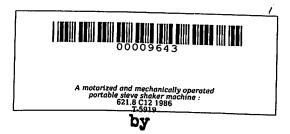
Marking Ingline of Science and Technology Markings, Madre Mande

A MOTORIZED AND MECHANICALLY OPERATED PORTABLE SIEVE SHAKER MACHINE: A. TECHNICAL FEASIBILITY STUDY

A Thesis

Presented to

the Faculty of the Graduate School


Marikina Institute of Science and Technology

In Partial Fulfillment

of the Requirements for the degree

Master of Technician Education

(Civil Technology)

JOHN N. CALAMIONG 1985-1986

ABSTRACT

and Mechanically Operated Portable Sieve Shaker Machine:

A Technical Feasibility Study," was to design, construct,
test and demonstrate the functionality, and revise the parts
as a result of testing. The development of this machine
would contribute to better teaching of civil technology, as
it would help solve the foremest problem met by most if not
all vocational schools regarding the lack of instructional
machine and equipment in workshop.

This technical feasibility study was limited to the design and construction of a machine utilizing locally available materials. Likewise, it was also limited to testing its functionality and efficiency. To do this the machine was subjected to testing of cement and aggregate samples. Finally, the result of testing led to the revision of some parts for the improvement of the machine performance.

The machine was conceived through readings and actual field experiences of the researcher. Design was prepared, cost estimate was done for supplies and materials, tools and equipment needed were secured, and working drawing and details of different parts and assemblies were drawn before the construction procedures. Based on this, the

machine was constructed and tried out for possible improvement and reivision. Final try-out was done after correcting the defects.

The findings of this study show that it is technically feasible for any shop instructor to design and construct the machine in order to enhance the teaching and learning process and that the machine is functional and efficient in testing samples of construction materials like cement, soil, and aggregates. Likewise it can be mass-produced because the mechanism is simple and materials are locally available. It is economical as its production cost which include the supplies and materials, labor, overhead, and operating cost amounted to five thousand seventy one pesos and forty-five centavos (P5,071.45).

TABLE OF CONTENTS

																	Page
TITLE PAGE	1 0	•	0	0	•	•	•	•	•		•	0	•	•	•	•	i
APPROVAL SHEET		•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	ii
DEDICATION	•	6	•	•	•	•	•		•	•	•	•		•	•	•	iii
ACKNOWLEDGEMENT	•	ó	•	•	é	ė	•	0	•	•	•	•	•	•		٠	iv
ABSTRACT	•	•	•	٠	•	•	•	•	•	•		•	•	•	•	•	vi
TABLE OF CONTENTS	ó	•	0	•	à	ó	•	•	•	1	•	•	•	•	•	•	Viii
LIST OF TABLES	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	x
LIST OF FIGURES .	•	•	•	6	•	•	•	•	•	•	•	•	•	•	•	•	xi
Chapter																	
I INTRO	DUC	TI	ON	Ī	•	•	•	•	•	•	•	•	•		•	•	1
A.		ig						eti	.fi	.ca	ati	or	1	of •	•	•	1
В•	Ob	je	ct	įv	es	0	f	tł	ıe	8	tuć	ly	•	۰	•	•	3
C.	Sc	op	е	an	d	De	li	mi	.te	ıti	ior	1	•	•	•	•	4
II CONCE	PTU	AL	F	RA	ME	WO	RK		•	•	٥	•		•	•	•	5
A.		vi te:					10	ıte	d	S1	tud	iie	•	aı	nd •	•	5
B.	Co	nc	еp	tu	al	M	od	le1		•	•	•	•	•		•	14
C.	Op Va	er:	at ab	io le	na s	1 :	De •	fi •	ni •	ti •	or.	•	ı	Ke	•y	•	15
III DEVEL	OPM	EN!	r	OF	T	HE	P	RO	JE	CI	1	•	•	•	•	•	17
A	Su	pp.	li	es	a	nd	M	lat	er	ia	ls	l	•	•	•	•	17
B_{ullet}	To	ol	S	an	d :	Eq	ui	pn	en	t	0	•	e	•	•	•	20
C.	Co	ns.	tri	uc'	ti	on	P	ro	ce	du	re		•	0	•	0	22

Chapter	Page
D. Try-out and Revision	43
E. Production Cost	48
IV DESCRIPTION OF THE COMPLETED PROJECT .	54
A. Structure	54
1. Features	54
2. Parts and Function	56
3. Capabilities	57
4. Limitations	59
B. Process	62
1. Operating Procedure	62
2. Maintenance	64
3. Safety and Control Measures.	65
V SUMMARY, CONCLUSION, AND RECOMMENDATIONS	66
A. Summary	66
B. Conclusion	67
C. Recommendations	68
BIBLIOGRAPHY	69
CURRICULUM VITAE	71

LIST OF TABLES

Table		Page
1	Supplies and Materials	17
2	Tools and Equipment and Their Respective Punctions	20
3	Production Time Frame	47
4	Number of Days Required in the Production of a Motorized and Mechanically Operated Portable Sieve Shaker Machine	48
5	Bill of Supplies and Materials	50
6	Cost Analysis in the Production of a Motorized and Mechanically Operated Portable Sieve Shaker Machine	53
7	Parts of the Completed Project and Their Respective Functions	58

LIST OF FIGURES

Figur	e	Page
ı	Conceptual Model of the Study	14
2	Assembly and Working Drawing	
3	Sieve Base Assembly	25
4	Accentric	26
5	Counter Weight	27
6	Guide Frame	29
7	Clamp	31
7-a	Thumb Screw	31
7 - -b	Guide Pulley	32
8-a	Shafting for Sicve Base Assembly	33
9	Flange Bearing	34
9 - a	Hexagonal Nuts	34
10-a	G.I. Pipe Spacer	36
11	Driver and Driven Pulley	37
ll-a	Shaft Collar	37
12	V-Belt Pulley	38
12~a	Wiring Assembly	40
13	Handle Frame	42
13-a	Handle Lock Pin	42
1:4-a	Hexagonal Nuts	44
15	Driver Pulley	45
16	A Motorized and Mechanically Operated Portable Sieve Shaker Machine	46
17	Paradigm of Interrelationship of Parts (Motor Operated)	60
18	Paradigm of Interrelationship of Parts (Mechanically Driven)	61

Chapter I

INTRODUCTION

This chapter discusses the origin and justification of the study, the objectives of the study, and its scope and delimitation.

A. Origin and Justification of the Study

One of the major problems that bothers administrators and vocational instructors in most of the technical and vocational institutions in the Philippines is the lack of handtools, machines, and equipment. This problem poses a great threat to the quality of would-be technicians trained in different institutions. To train a technician who is person equipped with both knowledge and skill, it is imperative to have the instructional supplies and materials, handtools, machines, and equipment available in order to carry and accomplish the technical vocational objectives. It is, therefore, the role of the administrators and the vocational teachers and trainors to find means of improvising equipment or machine which will serve as a substitute while the school cannot afford to buy new and modern machineries.

Hammon, Donally, et. al., (1972:85) noted American Vocational Educator, pointed out that: Over the centuries men have improvised jigs and devices for making work easier and more efficient. These devices are commonly known as

Chapter I

INTRODUCTION

This chapter discusses the origin and justification of the study, the objectives of the study, and its scope and delimitation.

A. Origin and Justification of the Study

One of the major problems that bothers administrators and vocational instructors in most of the technical and vocational institutions in the Philippines is the lack of handtools, machines, and equipment. This problem poses a great threat to the quality of would-be technicians trained in different institutions. To train a technician who is person equipped with both knowledge and skill, it is imperative to have the instructional supplies and materials, handtools, machines, and equipment available in order to carry and accomplish the technical vocational objectives. It is, therefore, the role of the administrators and the vocational teachers and trainors to find means of improvising equipment or machine which will serve as a substitute while the school cannot afford to buy new and modern machineries.

Hammon, Donally, et. al., (1972:85) noted American Vocational Educator, pointed out that: Over the centuries men have improvised jigs and devices for making work easier and more efficient. These devices are commonly known as