DEVELOPMENT OF A HYDRAULIC PRESS WITH DRILL PRESS. MACHINE FOR AUTOMOTIVE SHOP EQUIPMENT

Design Project

ANTHOMY I ARELLANO
CHARLIE WILLIAM

College of Engineering and Information Technology
CAVITE STATE UNIVERSITY

Indang, Cavita

Cavite State University (Main Library)

DP506

DP 621.2 Ar2 2017

May 2017

DEVELOPMENT OF A HYDRAULIC PRESS WITH DRILL PRESS MACHINE FOR AUTOMOTIVE SHOP EQUIPMENT

An Undergraduate Design Project
Submitted to the Faculty of the
College of Engineering and Information Technology
Cavite State University
Indang, Cavite

In partial fulfillment of the requirements for the degree Bachelor of Industrial Technology major in Automotive Technology

Development of hydraulic press with drill press machine for automotive shop 621.2 Ar2 2017 DP-506

ANTHONY J. ARELLANO CHARLIE WILLIAM May 2017

ABSTRACT

ARELLANO, ANTHONY J. and WILLIAM CHARLIE. Development of A Hydraulic Press with Drill Press Machine for Automotive Shop Equipment in the Cavite State University. Undergraduate Design Project. Bachelor of Industrial Technology, major in Automotive Technology. Cavite State University, Indang, Cavite. May 2017. Adviser: Prof. Keno S. Domingo.

This study was conducted to develop and to promote a good instructional mockup in the Automotive laboratory for students in the university. The hydraulic press with drill Press machine for automotive shop equipment was tested and evaluated in terms of functionality, workability, durability and safety.

The designed project composed of steel plates, angular bars, telescopic jack, with coiled spring, round bars, ram, pulleys, gears and drill press machine were all on a single constructed framework. The telescopic jack was operated using its lever to drive the steel plate down to press automotive parts and the coil spring acting as a return mechanism. The Drill press situated on the right of the framework for drilling automotive parts. This study aimed to design and develop a prototype that will help students to perform their laboratory activities specifically in fabricating and replacement of light weight vehicle auto parts. These activities included drilling various materials for mounting.

Thorough testing was conducted before it was subjected to final evaluation. The hydraulic press was tested using left rear axle shaft to remove the bearing and replaced it back. The drill press was tested with various automotive students' activities.

The study met all the objectives and certified that it was done well. However, there were some recommendations to further enhance and improve the project.

TABLE OF CONTENTS

	Page
APPROVAL SHEET	ii
BIOGRAPHICAL DATA	iii
ACKNOWLEDGEMENT	v
ABSTRACT	vii
LIST OF TABLES	X
LIST OF FIGURES	xi
LIST OF APPENDIX FIGURES	xii
LIST OF APPENDICES	xiii
INTRODUCTION	1
Statement of the Problem	2
Objectives of the Study	3
Significance of the Study	3
Time and Place of the Study	3
Scope and Limitation of the Study	3
Definition of Terms	4
REVIEW OF RELATED LITERATURE	7
METHODOLOGY	32
RESULTS AND DISCUSSION	42
Project Description	42
Project Structure	42
Project Capabilities and Limitations	43

Testing of the Project	45
Evaluation	46
SUMMARY, CONCLUSION AND RECOMMENDATIONS	53
SUMMARY	53
CONCLUSION	53
RECOMMENDATIONS	54
REFERENCES	55
APPENDICES	57

LIST OF TABLES

Table		Page
1	Plate number on fabricated frame	23
2	Materials used in developing hydraulic press and drill press for automotive shop equipment	31
3	The rating scale used in evaluating the designed project	46
4	Mean rating of the participants on the functionality	47
5	Mean rating of the participants on the workability47	
6	Mean rating of the participants on the durability	48
7	Mean rating of the participants on the safety	48
8	Overall Mean rating of the participants on the results of the project	49
9	Cost of materials used in the development of the project	50

LIST OF FIGURES

Figure		Page
1	Drill press machine	9
2	The rotating edge of the drill exerts a large force on the workpiece and the hole is generated	12
3	Application of pressure	16
4	Pressure is in all directions in a fluid	17
5	Double acting cylinder	18
6	Fluid used to produce a large force lift using the principles of hydraulics	19
7	C- shaped press body	20
8	H- shaped press body	21
9	Construction of the frame	34
10	The installation of the ram	35
11	The bars around the base of the framework	36
12	The painting of the frame	37
13	The installation of coil spring	38
14	The mounting of the telescopic jack	39
15	The mounting of the drill press	40
16	The complete constructed hydraulic press with drill press machine	41
17	Evaluation of the hydraulic press with drill press machine	45

LIST OF APPENDIX FIGURES

APPENDIX FIGURE		Page
1	The author while fitting the bench vise onto the drill press work table	59
2	The author while weld cleaning, surface preparation and surface finishing	60
3	The authors while installing the ram with new steel cables and cable clamps	61
4	The author while painting the frames with epoxy primer.	62
5	The author while sandpapering the body filler for smoother edges on the framework	63
6	The Hydraulic Press accessories for disassembling and assembling auto parts	64

LIST OF APPENDICES

Appendix		Page
1	Appendix Figures	58
2	Evaluation Sheets	65
3	Student Forms	117

DEVELOPMENT OF A HYDRAULIC PRESS WITH DRILL PRESS MACHINE FOR AUTOMOTIVE SHOP EQUIPMENT

Anthony J. Arellano Charlie William

Undergraduate design project submitted to the Faculty of the Department of Industrial Engineering and Technology, College of Engineering and Information Technology, Cavite State University, Indang, Cavite. Cavite in partial fulfillment of the requirement for the degree of Bachelor in Industrial Technology major in Automotive Technology with contribution No.CEIT-2016-17-2-006. Prepared under the supervision of Mr. Keno S. Domingo.

INTRODUCTION

The automotive industry is a wide range of companies and organizations involved in the design, manufacturing, marketing, and selling of motor vehicles. Automotive jobs require the use of powerful force to exert in assembling and disassembling parts that is press fitted together.

A hydraulic press is a device using a hydraulic cylinder to generate a compressive force. It uses the hydraulic equivalent of a mechanical lever and was also known as Bramah press (Wikipedia Foundation, 2009).

A drill press is a vertical drilling machine powered by an electric motor which is composed of a base that supports a column; the column in turn supports a table. Work can be supported on the table with a vise clamps. Height of the table can be adjusted with a table lift crank than locked in place with a table lock. The column also supports a head containing a motor. The motor turns the spindle at a speed controlled by a variable speed