# EFFECTS OF PRUNING AND TERICATORS ON SUGARAPPLE (ANNONA SQUAMOSA I.) PRODUCTION IN THATLAND

SEUBSAKD NAVACTINDA

NOVENDER 1981

# EFFECTS OF PRUNING AND IRRIGATION ON SUGARAPPLE (ANNONA SQUAMOSA L.) PRODUCTION IN THAILAND

#### SEUBSAKD NAVACHINDA



Effects of pruning and irrigation on sugarapple (Annona squamosa L.) production 634 N22 1981

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL UNIVERSITY OF THE PHILIPPINES AT LOS BAÑOS IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE (Horticulture)

November 1981

#### ABSTRACT

SEUBSAKD NAVACHINDA, University of the Philippines at Los Baños, November 1981. Effects of Pruning and Irrigation on Sugarapple (Annona Aquamosa L.) Production in Thailand. Major Professor: Dr. Roberto E. Coronel.

Pruning caused lateral bud growth, flower bud initiation and fruit maturity in 23, 46 and 183 days, respectively. Pruning did not affect total soluble solids, keeping quality and total yield, but significantly increased fruit size, economic yield and income.

Irrigation caused earlier shooting, flowering and harvesting 10-15 days when compared with control. It also increased the number of shoots and fruits, fruit size, total and economic yield and income.

Irrigation and pruning had no significant interaction on number of flowers, percentage of fruit retained, harvesting period, number of mature fruits, yield and income but had significant interaction on days to lateral bud sprouting, number of shoots and days to flowering.

#### TABLE OF CONTENTS

|                                                | DAGE |
|------------------------------------------------|------|
| DSAC-EAPIO                                     | PAGE |
| INTRODUCTION RECEIVED                          | 1    |
| Objective Office                               | 3    |
| REVIEW OF LITERATURE                           | 4    |
| Flowering and Fruiting Habits in<br>Sugarapple | 4    |
| Flowering and Production es                    | 7    |
| Flowering as Affected by Pruning               | 8    |
| MATERIALS AND METHODS                          | 10   |
| General Procedure                              | 10   |
| Cultural Practices                             | 16   |
| Data Collection                                | 17   |
| RESULTS                                        | 26   |
| Effect on Lateral Bud                          | 26   |
| Effect on Flowering                            | 29   |
| Effect on Fruit Retention                      | 30   |
| Effect on Fruiting                             | 32   |
| Effect on Total Yield and Economic Yield       | 40   |
| Effect on Income                               | 42   |

|                                            | PAGE       |
|--------------------------------------------|------------|
| DISCUSSION                                 |            |
| Effect of Pruning                          | 45         |
| Effect of Irrigation                       | 50         |
| Relation Between Pruning and<br>Irrigation | 54         |
| Economics of Pruning and Irrigation        | 54         |
| SUMMARY AND CONCLUSION                     | 55         |
| LITERATURE CITED                           | 5 <b>7</b> |
| APPENDIX TABLE                             | 60         |
| Climatic Data                              | 60         |

### LIST OF TABLES

| TABLE |                                                                                        | PAGE      |
|-------|----------------------------------------------------------------------------------------|-----------|
| 1     | Mean number of days of lateral bud sprouting                                           | 27        |
| 2     | Mean number of lateral bud sprouts per branch                                          | 28        |
| 3     | Mean number of days to first flowering                                                 | 29        |
| 4     | Mean of number of flowers (x 1,000) per plant                                          | 31        |
| 5     | Percentage fruit retention as affected by pruning and irrigation                       | 31        |
| 6     | Mean number of days to first harvesting                                                | 33        |
| 7     | Mean weight of fruit (kg) and date of harvesting as affected by pruning and irrigation | 34        |
| 8     | Mean number of mature fruits as affected by pruning and irrigation                     | 36        |
| 9     | Mean fruit weight (g) as affected by pruning and irrigation                            | <b>37</b> |
| 10    | Percentage by weight of class of fruit as affected by pruning and irrigation           | 38        |

viii

| TABLE |                                                                                  | PAGE |
|-------|----------------------------------------------------------------------------------|------|
| 11    | Mean of total solid soluble (TSS) in fruit as affected by pruning and irrigation | 39   |
| 12    | Mean total yield (kg) per plant as affected by pruning and irrigation            | 41   |
| 13    | Mean economic yield (kg) per plant as affected by pruning and irriga-tion        | 41   |
| 14    | Mean income (baht) per plant as affected by pruning and irrigation               | 43   |
| 15    | Mean income (dollar) per hectare<br>(Bahts 20 = \$1)                             | 43   |

#### LIST OF FIGURES

| FIGURE |                                                    | PAGE |
|--------|----------------------------------------------------|------|
| 1      | Appearance of unpruned and pruned sugarapple trees | 11   |
| 2      | Source of irrigation water                         | 12   |
| 3      | Different irrigation treatments                    | 14   |
| 4      | Sugarapple fruit - Class 1                         | 19   |
| 5      | Sugarapple fruit - Class 2                         | 20   |
| 6      | Sugarapple fruit - Class 3                         | 21   |
| 7      | Sugarapple fruit - Class 4                         | 22   |
| 8      | Sugarapple fruit - Class 5                         | 23   |
| 9      | Lateral bud shooting on unpruned tree              | 47   |
| 10     | Lateral bud shooting on pruned tree                | 48   |

## LIST OF APPENDIX TABLES

| APPENDIX<br>TABLE |                                                                                   | PAGE |
|-------------------|-----------------------------------------------------------------------------------|------|
| 1                 | Monthly average temperature, humidity and rainfall at Pak-chong Research Station, |      |
|                   | Nakhonrachasima, Thailand from<br>October 1980 to July 1981                       | 60   |

#### INTRODUCTION

Annonaceae family comprises more than 40 genera and has over 500 species. However, only a few genera produce edible fruits and a limited number of its species are of commercial importance. Among these are sugarapple, atemoya, custardapple, soursop and cherimoya which are the most important annonaceious fruits cultivated in the world.

The cultivated annonas seem to have originated in the West Indies and tropical America. Their distribution extends in the equator, in the moist region of Asia, tropical America and further to the Middle East countries, where they are well adapted (Popence, 1920; Venkataratnam and Satyanarayanaswamy, 1958).

In the past, sugarapple (Annona squamosa L.) cultivation in Thailand was limited and trees were grown only in the backyard. However, in recent years, large scale commercial plantations have been established. Its cultivation is now widespread in Thailand, particularly in the northeastern part of the country such as Nakonrachasima, Ubol, Udon, Khonkhen, Loi and Saraburi provinces. This is in