

EVALUATION OF CONCRETE HOLLOW BLOCKS FABRICATED WITH COCONUT COIR, SHREDDEDWOOD AND OYSTER SHELLS

RESEARCH STUDY

Applied Research IV

ERWIN ROMEN MEDINA

CAVITE STATE UNIVERSITY

Indang, Cavite

April 1998

EVALUATION OF CONCRETE HOLLOW BLOCKS FABRICATED WITH COCONUT COIR, SHREDDED WOOD AND OYSTER SHELLS

A Research Study Submitted to the Faculty Of Laboratory School, School of Education, Of Cavite State University Indang, Cavite

In Partial Fulfillment of the Requirements for Graduation of the General Science Curriculum

By

Evaluation of concrete hollow blocks fabricated with coconut coir, shredded 693.5 M46 1998 PS-270

ERWIN ROMEN MEDINA April 1998

ABSTRACT

MEDINA, ERWIN R., Applied Research IV (Gen. Science Curriculum), Cavite State University, Indang, Cavite, April 1998, "Evaluation of Concrete Hollow Blocks Fabricated With Coconut Coir, Shredded Wood and Oyster Shells".

Advisers:

Mr. Renato B. Cubilla

Mr. Tadeo M. Mojica

The study entitled "Evaluation of Concrete Hollow Blocks Fabricated With Coconut Coir, Shredded Wood and Oyster Shells" was undertaken to determine the effects of using coconut coir, shredded wood and oyster shells on the physical properties of fresh and hardened concrete hollow block. The properties of the fresh concrete are; consistency, water gain, setting shrinkage, entrained air, density, and hardening and the properties of hardened concrete are compressive strength, volume changes, mass changes and density changes. The study also determined the economic feasibility of the concrete hollow blocks fabricated with the said materials. The study was conducted at Tambo Ilaya, Indang, Cavite and Provincial Engineer's Office, DPWH, Trece Martirez City, Cavite from November 1997 to February 1998.

The proportions used in the study were; Treatment 1. 3 parts sand to 1 part coconut coir; Treatment 2. 3 parts sand to 1 part shredded wood; Treatment 3. 3 parts sand to 1 part oyster shells; Treatment 4. 6 parts sand to 1 part coconut coir and 1 part shredded wood; Treatment 5. 6 parts sand to 1 part coconut coir and 1 part oyster shells; Treatment 6. 6 parts sand to 1 part

shredded wood and 1 part oyster shells; *Treatment 7.* 9 parts sand to 1 part coconut coir, 1 part shredded wood and 1 part oyster shells and *Treatment 8.* pure sand.

Highly significant results were obtained in the parameters such as mass, density, consistency, bleeding or water gain, setting shrinkage, entrained air, density, and hardening for the fresh concrete; mass, density, mass changes, density changes for the hardened concrete; and the production cost of each concrete hollow blocks produced. However, non-significant results were gathered from volume and volume changes of the hardened concrete hollow block.

It was proven that it is more advisable to use coconut coir, shredded wood and oyster shells as extender aggregate for the production of concrete hollow blocks than using pure sand alone in terms of strength and economic feasibility.

TABLE OF CONTENTS

F	ages
Approval Sheet	ii
Biographical Sketch	iii
Acknowledgement	iv
Abstract	vii
List of Tables	хi
List of Figures	xii
List of Appendices	kiii
List of Plates	x v
Chapter I. Introduction	
Statement of the Problem	2
Objectives of the Study	3
Importance of the Study	4
Time and Place of the Study	6
Scope and Limitation of the Study	
Chapter II. Review of Related Literature	
Coconut Coir	7
Shredded Wood	8
Oyster Shells	9
Retting	9
Air-Drying	9
Curing	10
Chemical Attacks	10
Strength	10
Chapter III. Methodology	
Materials	11

Methods	12
Collection and Preparation of Materials	12
Sand Preparation	12
Production of Concrete Hollow Blocks	15
Storing of Fresh Molded Block	16
Curing	16
Properties and Acceptability of Hardened Concrete	16
Experimental Design	18
Laboratory Field Layout	18
Chapter IV. Results and Discussion	
Volume, Mass, Density and Specific Gravity of Aggregates	20
Volume, Mass and Density of Fresh Hollow Blocks	21
Properties of Fresh Concrete	22
Volume, Mass and Density of Hardened Hollow Block	25
Volume Change, Mass Change and Density Change of	
Hardened Hollow Block	26
Compressive Strength of the Hardened Hollow Block	27
Production Cost of Each Hollow Block	. 28
Chapter V. Summary, Conclusion and Recommendation	
Summary	33
Conclusion	34
Recommendation	. 35
Literature Cited	36
Appendices	. 38
Plates	51

LIST OF TABLES

7

Table Nun	nber Pa	age
1	Volume, Mass, Density and Specific Gravity of Aggregates	20
2	Volume, Mass and Density of Fresh Hollow Blocks	22
3	Properties of Fresh Concrete	23
4	Volume, Mass and Density of Hardened Concrete	26
5	Volume Change, Mass Change and Density Change of	
	Hardened Hollow Blocks	27
6	Compressive Strength of Hardened Hollow Blocks	28
7	Production Cost of Each Hollow Block	31

LIST OF FIGURES

Figure Number P		age
1	Composition of Concrete Hollow Blocks in Terms	
	of Volume	14
2	Dimensions of the Concrete Hollow Block	17
3	Field Layout of the Study	19
4	Compressive Strength of Hardened Hollow Block	29
5	Production Cost of Each Hollow Block	32

LIST OF APPENDICES

appendix	Letter		Page
Α	Mass	and Density of Each Replication of Fresh	
	Hollor	w Blocks	39
	A.1.	ANOVA for Mass of Fresh Hollow Blocks	39
	A.2.	ANOVA for Density of Fresh Hollow Blocks	. 39
В	Consi	stency and Water Gain of Each Replication of	
	Fresh	Concrete	. 40
	B.1.	ANOVA for Consistency of Fresh Concrete	. 40
	B.2.	ANOVA for Water Gain of Fresh Concrete	. 40
С	Setting	g Shrinkage, Hardening and Entrained Air of	
	Each l	Replication of Fresh Concrete	. 41
	C.1.	ANOVA for Setting Shrinkage of Fresh Concrete	. 41
	C.2.	ANOVA for Hardening of Fresh Concrete	. 41
	C.3.	ANOVA for Entrained Air of Fresh Concrete	. 42
D	Volum	ne and Mass of Hardened Concrete	. 42
	D.1.	ANOVA for Volume of Hardened Concrete	. 42
	D.2.	ANOVA for Mass of Hardened Concrete	. 43
E	Densi	ity of Hardened Concrete	. 43
	E.1.	ANOVA for Density of Hardened Concrete	. 43
F	Volur	me Change and Mass Change of Concrete Hollow Blocks	. 44
	F.1.	ANOVA for Volume Change of Concrete Hollow Blocks	. 44
	F.2.	ANOVA for Mass Change of Concrete Hollow Blocks	. 44
G	Densi	ity Change of Concrete Hollow Blocks	
	G.1.	Density Change of Concrete Hollow Blocks	. 45
н	Comr	pressive Strength of Hardened Hollow Blocks	. 46

	H.1.	Compressive Strength of Hardened Hollow Blocks (psi)	46
	H.2.	Compressive Strength of Hardened Hollow Blocks (MP)	46
I	Produ	ction Cost of Each Hollow Block	47
	I.1.	ANOVA for Production Cost of Each Hollow Block	47
J	Certifi	cation Sheet of Determination of Compressive Strength	48
K	Deterr	nination of Production Cost of Each Hollow Block	49

LIST OF PLATES

Plate Number	I	Page
1	Retting	52
2	Coconut Coir	53
3	Shredded Wood	54
4	Oyster Shells	55
5	Mixing	56
6	Slump Test	57
7	Molder	58
8	After Molding	59
9	Concrete Hollow Blocks	60
10	Concrete Hollow Blocks (First Week)	61
11	Concrete Hollow Blocks (Second Week)	62
12	Concrete Hollow Blocks (Third Week)	63
13	Concrete Hollow Blocks (Fourth Week)	64
14	Compressive Strength Test	65
15	Field Layout	66
16	Equipment Used in Study	67

EVALUATION OF CONCRETE HOLLOW BLOCKS FABRICATED WITH COCONUT COIR, SHREDDED WOOD AND OYSTER SHELLS1/

By

ERWIN ROMEN MEDINA

1/ A research study presented to the faculty of the Laboratory School, School of Education, Cavite State University, Indang, Cavite, in partial fulfillment of the requirements for graduation of Gen. Science Curriculum. Prepared under the direct supervision of Mr. Renato B. Cubilla and Mr. Tadeo M. Mojica.

Chapter I

INTRODUCTION

Good clothes, good health, a furnished car and a good house; these are some of the most important material things that many of us want to have. However, the possession of these material things, especially housing, had been one of the major problems of the people of the world. With an increasing population of the Philippines, from 67,581 in 1995 to the projected 74,575 Filipinos by year 2000 (Inventory of Population, 1995) there will be more Filipinos who will crave for a better home.

The government is doing its best by providing Filipinos a better place to live in. However, different housing programs are not enough to house the whole population of the country. In addition, housing needs a good source of construction materials gained from our