DESIGN AND CONSTRUCTION OF WHITE POWER GENERATION SYSTEM

THESIS

JOHN JOEL C. ABEJERO ROGELIO G. PAULINO JR.

College of Engineering and Information Technology

CAVITE STATE UNIVERSITY

Indany, Cevite

June 2018

DESIGN AND CONSTRUCTION OF URINE POWER GENERATION SYSTEM

Undergraduate Thesis
Submitted to the Faculty of the
College of Engineering and Information Technology
Cavite State University
Indang, Cavite

In partial fulfillment of the requirements for the degree Bachelor of Science in Electrical Engineering

Design and construction of urine power generation system 621.36(Ab1 2018 T.7564

JOHN JOEL C. ABEJERO ROGELIO G. PAULINO JR. July 2018

ABSTRACT

ABEJERO, JOHN JOEL C. and PAULINO JR., ROGELIO G. Design and Construction of Urine Power Generation System. Undergraduate Thesis. Bachelor of Science in Electrical Engineering. Cavite State University, Indang, Cavite. July 2018. Adviser: Prof. Ronald P. Peña.

The study was conducted from December 2017 to January 2018 inside the premises of Cavite State University – Main Campus, Engineering Science Building, 2nd floor male comfort room. The study was consisted of five (6) methods: (1) design and construction of Microbial Fuel Cell/s; (2) testing the power output of each MFC/s (3) construction of the MFC stack, (4) assembling the male urinal system, (5) test and evaluate the urine power generation system; through pilot testing and (6) conduct cost computation.

The study covered proposal of microbial fuel cell design and its construction of urine power generation system that was evaluated.

Test and evaluation were done by determining the 18 series microbial fuel cells peak output open circuit voltage of 8.15V with 10.12 mA short circuit current. The configuration of microbial fuel cell stack was made of 9 cells in parallel together and able to supply a 1 watt 5mm LED rated 3.3V, 20mA for 10 hours without continuous feed of urine having a storage capacity of 107mAH.

Outputs also include the soft and hard copy of the evaluation results, circuit diagrams and graphs.

The total cost of the study was 20, 400 and the cost of 18 (eighteen) microbial fuel cells was 1,984 pesos.

TABLE OF CONTENTS

	Page
TITLE PAGE	i
APPROVAL SHEET	ii
BIOGRAPHICAL DATA	iii
ACKNOWLEDGEMENT	v
ABSTRACT	x
LIST OF TABLES	xiv
LIST OF FIGURES	xv
LIST OF APPENDIX FIGURES	xvi
LIST OF APPENDICES	xvii
INTRODUCTION	1
Statement of the Problem	2
Objectives of the Study	3
Significant of the Study	3
Time and Place of the Study	4
Scope and Limitation	4
Definition of Terms	4
REVIEW OF RELATED LITERATURE	8
METHODOLOGY	32
Materials	32
Methodology	33

Design and construction of microbial fuel cell/s	33
Testing each the microbial fuel cell output power	35
Construction of microbial fuel cell stack	36
Urine power generation system	38
Testing and evaluation	38
RESULTS AND DISCUSSION.	40
Description of the system	42
Principle of operation	42
Components of the system	43
Urine power generation system	43
Microbial fuel stack	44
Preparation of microbial fuel cell	45
Microbial fuel cell output power - controlled	45
Microbial fuel cell output power with load	48
Construction of microbial fuel cell stack	49
LED application	50
Microbial fuel cell output - uncontrolled	55
Storage capacity of the battery	57
Self-discharge of the battery	58
Cost computation	60
SUMMARY, CONCLUSION, AND RECOMMENDATIONS	
Summary	62
Conclusion	62

Recommendations	63
REFERENCES	64
APPENDICES	68

LIST OF TABLES

Table		Page
1	Measured value of series 18 microbial fuel cells with load	47
2	Time – based voltages and current output with load of the system - uncontrolled.	55
3	Voltage and current values under load of 1 watt, rated 3V and 20mA	56
4	Self – discharge test of urine power generation system	57
5	Cost computation of the study.	59
6	Cost Computation of the System	60

LIST OF FIGURES

Figure		Page
1	Working principle of microbial fuel cell	11
2	Metal air battery with carbon electrode	16
3	Dual carbon battery with lithium ion dispersed in the electrolyte	17
4	Types of MFCs used in studies	22
5	A tubular configuration of MFC using same electrolyte – urine	29
6	Actual microbial fuel cell design (2D view)	34
7	Holder of microbial fuel cell stack	36
8	Dimension of the male urinal system	37
9	Urine power generation system (back view)	39
10	Urine power generation system (front view)	39
11	Flow of urine power generation system	39
12	Front view of the urinal system	40
13	Inside of the urine power generation system	41
14	Microbial fuel cell stack	42
15	Graphical representation of MFC trial 1	43
16	Graphical representation of MFC trial 2	44
17	Graphical representation of MFC trial 3	45
18	Microbial fuel cell/s Outputs Comparison	46
19	Schematic Diagram of Microbial fuel cell stack	49
20	Graphical representation of open circuit voltage Day 1	51

21	Graphical representation of open circuit voltage Day 2	52
22	Graphical representation of open circuit voltage Day 6	54
23	Discharge Curve of Microbial Fuel Cell	56
24	Self - Discharge of Microbial Fuel Cell	58

LIST OF APPENDIX FIGURES

Appendix Figure		Page
1	Urine samples	71
2	Ceramic tubes courtesy of red slab pottery	71
3	Cathode electrode testing	71
4	Cell preparation	72
5	Sample single cell voltage reading	72
6	MFC preparation	72
7	Stack voltage reading	73
8	Urine power generation system (front view)	73
9	Urine power generating System (side view)	74
10	Custom – make wood that will hold the MFC/s	74

LIST OF APPENDICES

Appendix		Page
1	Appendix Figures	72
2	Appendix Computations	77
3	Appendix Tables	80
4	Appendix Letters	85

DESIGN AND CONSTRUCTION OF URINE POWER GENERATION SYSTEM

John Joel C. Abejero Rogelio G. Paulino Jr.

An undergraduate design project presented to the faculty of the Department of Computer and Electronics Engineering, College of Engineering and Information Technology, Cavite State University, Indang, Cavite in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical Engineering with Contribution No. (FIT) 2017 - 2018 - 5-001 Prepared under the supervision of Engr. Ronald P. Peña.

INTRODUCTION

The current society is now becoming more dependent on technologies that resources in powering these technologies start to deplete. Promising technologies such as photovoltaics, wind – turbines and wave – generators dominate the field of natural energy harnessing for electricity and indeed provide practical solutions in areas where solar radiation, wind force and wave power are abundant. One other type of alternative energy source that has been receiving increased attention, is biomass and its conversion to electricity from chemical energy. Using microbial fuel cell (MFC) is one of a promising energy converter.

Microbial fuel cell is a bio – electrical transducer that transforms waste materials into a renewable source of electricity. The one that has been already proven to be exceptionally good and an efficient fuel for MFC is human urine. It has the ability to directly convert chemical energy into an energy that is useful – electricity.