CARLON STORAGEROTESTAL OF MALEOGRAM (Substants 1994) FOREST IN CARLIESTALE LANGUESTAL BEHARMARIA A CARLIESTALE LANGUESTALE LA CARLIERA

College of Apteclary Food, Artiforment and Malaya Wassess CAMIE STATE UNIVERSITY Inding, Certic

CARBON STORAGE POTENTIAL OF MAHOGANY (Swietenia spp.) FOREST IN CAVITE STATE UNIVERSITY, PHILIPPINES: A BASIS FOR A CARBON MITIGATION PLAN

Undergraduate Thesis
Submitted to the Faculty of the
College of Agriculture, Food, Environment and Natural Resources
Cavite State University
Indang, Cavite

In partial fulfillment
of the requirements for the degree
Bachelor of Science in Environmental Science

Carbon storage potential of mahogany (Swietenia spp.) forest in Cavite State 634.95[C68 2019 T-8723

JOSE T. COLLADO JR. DANIEL M. SARMIENTO
June 2019

ABSTRACT

COLLADO, JOSE T. JR. and SARMIENTO, D.M. Carbon Storage Potential of Mahogany (Swietenia macrophylla) Forest in Cavite State University, Philippines: A Basis for a Proposed Action Plan. Undergraduate Thesis. Bachelor of Science in Environmental Science, Cavite State University, Indang, Cavite. May 2019. Adviser: Mr. Glenn Bryan A. Creencia.

A tropical forest has a valuable role in relation to climate change being a source and sink of carbon. The study created a distribution map of mahogany found trees (Swietenia macrophylla) in Cavite State University; determined the morphometrics of mahogany trees in the university in terms of diameter at breast height (DBH) and height; determined the total carbon storage of mahogany trees in the university; determined the factors affecting carbon sequestration of the mahogany; and created a proposed carbon mitigation plan for the utilization and management of mahogany trees in the university. The height and diameter at breast height (DBH) of all mahogany trees were measured. Allometric equation was used to calculate the carbon storage of mahogany trees. The location of mahogany trees was determined using Global Positioning System device. There are 3402 mahogany trees inside the university. Majority of the mahogany trees have a diameter of 30cm and the 712 mahogany trees have below 30cm. Mahogany forest covers about 7.32 ha of the total land area of Cavite State University and it stored carbon amounting to 1,960.79 tonnes. The height of mahogany greatly affected the carbon sequestration of mahogany trees. CvSU contributed in carbon mitigation since there is a high density of forest found inside the campus.

TABLE OF CONTENTS

	Page
BIOGRAPHICAL DATA	iii
ACKNOWLEDGEMENT	V
ABSTRACT	ix
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF APPENDIX FIGURES	xiv
INTRODUCTION	1
Statement of the Problem	3
Objectives of the Study	3
Significance of the Study	4
Time and Place of the Study	4
Scope and Limitations of the Study	4
Definition of Terms	5
Conceptual framework of the Study	5
REVIEW OF RELATED LITERATURE	7
METHODOLOGY	14
Materials	14
Methods	14
Study area	14
Mapping of mahogany plantations in Cavite State University	15
Tree categorization and classification.	15
Diameter at breast height (DBH) measurement	16
Tree height measurement	16
Computation of aboveground biomass (AGB) of tree	16

Computation of belowground biomass (BGB)	17	
Computation of total biomass	17	
Estimation of carbon on trees	17	
Computation of tree biomass density and carbon stored	17	
Statistical analysis of the study	18	
Formulation of carbon mitigation plan	18	
RESULTS AND DISCUSSION		
Mahogany Trees in Cavite State University	19	
Diameter at Breast Height and Height of the Mahogany Trees	22	
Biomass of Mahogany Trees	22	
Carbon Sequestration Modelling	23	
Proposed Carbon Mitigation Plan	25	
SUMMARY, CONCLUSION, AND RECOMMENDATIONS		
Summary	27	
Conclusions	28	
Recommendations	29	
REFERENCES	30	

LIST OF TABLES

Table		Page
1	Tree categorization	19
2	Morphometric profile of mahogany trees in Cavite State University	22
3	Carbon sequestration of mahogany-dominated vegetation	23
4	Regression model diagnostics	25
5	Carbon mitigation impact plan	26

LIST OF FIGURES

Figure		Page
1	Conceptual framework of the study	6
2	Cavite State University-Don Severino delas Alas Campus, Indang, Cavite (Source: CvSU-EPRMP, 2017)	15
3	Map of mahogany distribution in Cavite State University-Don Severino delas Alas Campus, Indang, Cavite Campus	20
4	Map of mahogany distribution in Cavite State University-Don Severino delas Alas Campus, Indang, Cavite (Google Earth Pro)	21
5	Non-linear model of carbon sequestration vs DBH and height of mahogany	24

LIST OF APPENDIX FIGURES

Apendix Figure		Page
1	Measuring the mahogany's height	41
2	Measuring the DBH	42
3	Listing both DBH and height of the mahogany	43
4	Listing the location of the mahogany	44

CARBON STORAGE POTENTIAL OF MAHOGANY (Swietenia spp.) FOREST IN CAVITE STATE UNIVERSITY, PHILIPPINES: A BASIS FOR A CARBON MITIGATION PLAN

Jose T. Collado Jr. Daniel M. Sarmiento

An undergraduate thesis manuscript submitted to the faculty of the Department of Forestry and Environmental Science, College of Agriculture, Food, Environment and Natural Resources, Cavite State University, Indang, Cavite in partial fulfillment of the requirements for the degree of Bachelor of Science in Environmental Science with Contribution No. £5.2019-03. Prepared under the supervision of Mr. Glenn Bryan A. Creencia.

INTRODUCTION

Climate change is one of the concerns of the humanity today and it is due to increasing emission of greenhouse gases. Global surface temperature has increased by more than 0.8 °C since 1980 and average temperature has exceeded in the last century average every year (Global Change, 2017). Human activities, such as burning of fossil fuels such as coal, oil, and gas, have caused a massive increase in the concentration of carbon dioxide in the atmosphere. Potential impacts include sea-level rise, increased wildfires and frequency, floods, droughts, tropical storms; change in amount, timing, and distribution of rain, snow and runoff; and disturbance of coastal marine and other ecosystems (Sunquist *et al.*, 2008). Moreover, carbon dioxide level increased by 46 percent in over 250 years (Hindustantimes, 2019). Mitigation and efforts, small or big scale, must be done in order to lessen the impacts of climate change.

The Intergovernmental Panel on Climate Change (IPCC) assessed that impacts and costs of 2.7 degrees Fahrenheit of global warming are far greater than the expected. This rise in the global temperature could happen within 11 to 20 years