D49 2005

631.875 VELOPMENT AND EVALUATION OF A PORTABLE HOUSEHOLD COMPOSTER

RESEARCH STUDY

ANSEL CHRISTIAN JAMIL D. AYOS CAMILO E. POLINGA JR. SAGE JOSEPH P. ROSELL REINEL DAREN E. SANGALANG

CAVITE STATE UNIVERSITY SCIENCE HIGH SCHOOL Indang, Cavite

APRIL 2005

DEVELOPMENT AND EVALUATION OF A PORTABLE HOUSEHOLD COMPOSTER

A Research Study Presented to the Faculty of the Science High School College of Education Cavite State University Indang, Cavite

In Partial Fulfillment of the Requirements for Graduation

Development and evaluation of a portable household composter 631.875 D49 2005 P.483

ANSEL CHRISTIAN JAMIL D. AYOS

CAMILO E. POLINGA JR

SAGE JOSEPH P. ROSELL

REINEL DAREN E. SANGALANG

APRIL 2005

ABSTRACT

AYOS, ANSEL CHRISTIAN JAMIL D., POLINGA, CAMILO JR. E., ROSELL, SAGE JOSEPH P., and SANGALANG, REINIEL DAREN E.. Applied Research IV, Cavite State University Science High School, Indang, Cavite." **DEVELOPMENT AND EVALUATION OF A PORTABLE HOUSEHOLD COMPOSTER**.

Thesis Adviser:

Dr. CAMILO A. POLINGA

The study on "Development and Evaluation of a Portable Household Composter" was conducted at the Faculty Village, Cavite State University, Indang, Cavite from August 2004 to February 2005. It aimed to develop, fabricate and evaluate a composter that can be used for composting household garbage. The composter was evaluated in terms of retention time.

The shortest retention time recorded was 7 days with a stirring duration of 10 turns applied two times a day (8am and 5 pm). This indicates that the garbage loaded on Saturday which is market day can be harvested on the next market day (Saturday) which is also the schedule for the next loading.

The temperature of the compost materials is affected by the duration and frequency of stirring the substrate. The highest temperature recorded was 51.4 deg. C.

Generally, there was a decrease in the Carbon to Nitrogen (C/N) ratio of the final product. The range of 18.6 to 31.2 is within acceptable limit for compost and composting.

The Nitrogen-Phosphorus-Potassium (NPK) content of the compost product is sufficient for a good soil conditioner.

The recovery rate of the composter is 25.7 percent (air-dried compost).

The cost of the machine was P1,250.00

TABLE OF CONTENTS

PAGE
ii
iii
v
vii
хi
xii
xiii
1
3
3
3
4
4
5
5
7
16
19
21

Mechanization of Composting	22
Testing and Judging the Condition of Compost	22
METHODOLOGY	25
Materials	25
Description of the Machine	25
Principle of Operation	30
Evaluation Parameters	30
Experimental Design	30
Test Procedure	31
Preliminary Evaluation	32
RESULTS AND DISCUSSION	34
Retention Time	34
Temperature	35
Carbon to Nitrogen Ratio	40
Moisture Content	42
pH	44
Recovery Rate	45
NPK Content	46
SUMMARY, CONCLUSION AND RECOMMENDATION	48
Summary	48
Conclusion	50

PAGE

CONTENT

Recommendation	51
BIBLIOGRAPHY	52
PLATES	53

LIST OF FIGURES

F	Figure		
	1	The Composting Process	6
	2	The Household Composter and its Components	26
	3	Average Daily Temperature of the Substrate Before Stirring	37
	4	Average Daily Temperature of the Substrate After Stirring, deg C	38
	5	Initial and Final C/N Ratio of the Substrate	41
	6	Moisture Content of the Substrate at Different Stages of Decomposition	43
	7	Initial and Final pH of the Compost Materials	45

LIST OF TABLES

Table		Page
1	C/N Ratio of Various Wastes	9
2	Some Common Composting System	17
3	The Retention Period of All Treatments	35
4	Average Daily Temperature of the Substrate Before Stirring	36
5	Average Daily Temperature of the Substrate After Stirring	37
6	Daily Temperature Difference Before and After Stirring, deg C	39
7	Daily Temperature Reduction of the Substrate Before Aeration	39
8	Average Daily Temperature Reduction After Stirring	40
9	Carbon to Nitrogen Ratio of the Compost Materials	41
10	Average Moisture Content of the Substrate	42
11	Initial and Final pH of the Substrate	44

LIST OF PLATES

Plate		Page
1	Pictorial View of the Composting Bin	27
2	The Composting Bin Showing the Floor Drain	28
3	The Cover of the Composter with the Mechanical Stirrer	29
4	Fruit Refuse Collected from the Households of the Faculty Village	54
5	Vegetable Refuse Collected from Indang Public Market .	55
6	Vegetable Refuse Collected from Indang Public Market .	56
7	Market Refused used as Raw Materials in the Experiment	57
8	The Researcher Chopping the Raw Materials	58
9	The Chopped Raw Materials	59
10	The Researcher Chopping the Raw Materials Before Loading into the Composting Bin	60
11	The Compost Activator Being Sprayed into the Raw Materials	61
12	The Raw Materials after Chopping and Ready for Loading into the Composting Bin	62
13	Measurement of the Temperature of the Control Using a Thermometer	63

DEVELOPMENT AND EVALUATION OF A PORTABLE HOUSEHOLD COMPOSTER

Ansel Christian Jamil D. Ayos Camilo E. Polinga Jr. Sage Joseph P. Rosell Reiniel Daren E. Sangalang

A research study presented to the faculty of the Science High School, College of Education, Cavite State University, Indang, Cavite in partial fulfillment of the requirements for graduation under the supervision of Dr. Camilo A. Polinga

INTRODUCTION

Garbage is undoubtedly the most pressing problem of the urban centers of the country today aside from the economy. This can be attributed to the increasing number of people living in the metropolis, the declining capacities of landfills and the extreme difficulty of finding new sites for dumpsites. An average Filipino generates ½ kilogram of garbage daily (Polinga, 2001). In Metro Manila alone, it is estimated that 5,800 metric tons or 2,800 cubic meters of garbage is generated everyday, and out of this volume, only 73% is actually collected with the rest ending up in rivers and drainage canals (Daily Inquirer, June 19, 2001 as cited by Polinga, 2001). This causes serious flooding during rainy days. Without collection, garbage quickly piles up in mountains along the street which become an eye sore and causes considerable traffic. This garbage also generates