635.9 M31 2007

INDUCTION OF POINSETTIA (Emphorbia pulcherrima) USING DIFFERENT TECHNIQUES

RESEARCH STUDY

BRYAN MAG G. MANALASTAS
jEFERSON S. MAPANOO

Science High School

CAVITESTATE UNIVERSITY

Indang, Cavite

April 2007

FLOWER INDUCTION OF POINSETTIA (Euphorbia pulcherrima) USING DIFFERENT TECHNIQUES

A Research Study
Submitted to the Faculty of the Science
High School, College of Education
Cavite State University
Indang, Cavite

In partial fulfillment of the requirements for graduation

Flower induction of poinsettia using different techniques 635.9 M31 2007

BRYAN MAG G. MANALASTAS JEFERSON S. MAPANOO April 2007

ABSTRACT

MANALASTAS, BRYAN MAG G. and JEFERSON S. MAPANOO. Flower Induction of Poinsettia Using Different Techniques, Research Study. Cavite State University Science High School, Indang Cavite. April 2007. Adviser: Prof. Carlos P. Rodil.

The study entitled, "Flower Induction of Ponsettia Using Different Techniques" was conducted at the Ornamental Nursery of the College of Agriculture, Forestry, Environment and Natural Resources, Cavite State University (CAFENR-CvSU) at Indang, Cavite. The study aimed to evaluate various flower induction techniques in poinsettia. Specifically, it was undertaken to: determine the effects of the application of light control, ethylene concentration and potassium nitrate as flower inducer in poinsettia; compare the flowering response of poinsettia to different techniques that were used; and determine the best flower induction technique in poinsettia.

Four treatments were used in the study (control, spraying of potassium nitrate, application of ethylene smoke and light control. From 60 experimental plants, five parameters were gathered and analyzed using ANOVA and DMRT.

Based on the results of the study, light control treatment was the most effective flower inducing technique for poinsettia.

TABLE OF CONTENTS

	Page
APPROVAL PAGE	ii
BOIGRAPHICAL DATA	iii
ABSTRACT	iv
ACKNOWLEDGMENT	v
LIST OF TABLES	ix
LIST OF APPENDIX TABLES	x
LIST OF APPENDIX FIGURES	xi
INTRODUCTION	1
Importance of the Study	. 2
Statement of the Problem	. 2
Objectives of the Study	. 3
Scope and Limitation of the Study	. 3
Time and Place of the Study	3
REVIEW OF RELATED LITERATURE	. 4
Poinsettia	. 4
Response of Petunias to Ethylene	. 5
Potassium Nitrate in Plants	. 7
Potassium Nitrate Sprays	7
Flower Forcing on Wax Apples	8

METHODOLOGY		
Preparation of Planting Materials	9	
Experimental Layout	9	
Potassium Nitrate Application	11	
Ethylene Application	11	
Light Control	11	
Care and Maintenance of the Plants	11	
Data that were Gathered	12	
Data Analysis	12	
RESULTS AND DISCUSSION	13	
Average Height of the Plants	13	
Average Number of Leaves	14	
Average Length of Leaves	15	
Average Number of Modified Leaves	16	
Percentage Survival of Plants	17	
SUMMARY, CONCLUSSION, AND RECOMMENDATION		
Summary	18	
Conclusion	19	
Recommendation	19	
LITERATURE CITED	20	
APPENDIX TABLES		
A PREMINING FIGURES		

LIST OF TABLES

Fable		Page
1	Average height of the plants at flowering per treatment	. 13
2	Average number of leaves at flowering per treatment	. 14
3	Average length of leaves at flowering per treatment	. 15
4	Average number of modified leaves at flowering per treatment	. 16
5	Average survival at flowering per treatment	17

LIST OF APPENDIX TABLES

Appendix Ta	ble	Page
1	Analysis of variance of average height of the plants	21
2	Analysis of variance of average number of the leaves	21
3	Analysis of variance of average length of the leaves	22
4	Analysis of variance of average number of modified leaves	22
5	Analysis of variance of average survival of the plants	23

LIST OF APPENDIX FIGURES

Appendix Figure		
1	Poinsettia grown from five node cuttings	25
2	Chemicals (potassium nitrate and ethylene)	26
3	Experimental materials	27
4	Measuring materials	28
5	Experimental materials in T1 (control)	. 29
6	Experimental materials in T2 (KNO3)	. 30
7	Experimental materials in T3 (ethylene)	31
8	Experimental materials in T4 (light control)	. 32
9	Spraying of Potassium Nitrate	. 33
10	Application of Ethylene smoke	. 34
11	Putting of shading material for light control	. 35
12	Watering	36
13	Data Gathering	37
14	T1 (control) in full bloom	38
15	T2 (potassium nitrate) in full bloom	39
16	T3 (ethylene) in full bloom	40
17	T4 (light control) in full bloom	41

FLOWER INDUCTION OF POINSETTIA (Euphorbia pulcherrima) USING DIFFERENT TECHNIQUES^{1_/}

Manalastas, Bryan Mag G. Mapanoo, Jeferson S.

¹-/A research study submitted to the faculty of Science High School, College of Education, Cavite State University, Indang, Cavite in partial fulfillment of the requirements for graduation. Prepared under the supervision of Prof. Carlos N. Rodil

INTRODUCTION

Poinsettia (Euphorbia pulcherrima) is a member of Euphorbiaceae or spurge family. This flowering plant can be found almost all over the world. They are one of the most popular flowers during Christmas season. They are susceptible to cold for about 25-30 degrees Celsius. As an ornamental plant, poinsettia has dark green leaves and bright colored flowers. Poinsettia's flowers are slow to develop so they can be the cause of loss of income to people who use it as a source of income or livelihood.

Several modern techniques, inventions and innovations were introduced especially in the field of agriculture and crop productions. Some fruits, vegetables, and flowering plants such as poinsettia, grow and bear flowers in seasons. After a long time of research and series of test, growth hormones were developed to improve the development of seasonal flowering plants. Many chemicals can modify plant growth.