581.634 G93 2007

TS OF VESICULAR ARBUSCULAR MYCORRHIZAL ROOT INOCULANT ON THE GROWTH OF JATROPHA (Jatropha curcas) SEEDLINGS

THESIS

GLENN LINO GEGANTOCA GUAÑEZO

College of Arts and Sciences

CAVITE STATE UNIVERSITY

Indang, Cavite

April 2007

EFFECTS OF VESICULAR ARBUSCULAR MYCORRHIZAL ROOT INOCULANT ON THE GROWTH OF JATROPHA (Jatropha curcas) SEEDLINGS

C

Undergraduate Thesis
Submitted to the faculty of
Biological Sciences Department
Cavite State University
Indang, Cavite

In partial fulfillment of the requirements for the degree of Bachelor of Science in Biology

ABSTRACT

GUAÑEZO, GLEN LINO, G. "Effect of Vesicular-Arbuscular Mycorrhizal Root Inoculant on the Growth of Jatropha (Jatropha curcas) Seedlings" Undergraduate thesis. Bachelor of Science in Biology, Major in General Biology, Cavite State University, Indang, Cavite. April 2007. Adviser: Dr. Yolanda A. Ilagan

The effects of VAM root inoculant on the growth of Jatropha (*Jatropha curcas*) seedlings were evaluated from November 2006 to January 2007.

A total of 75 seedlings were arranged in a Completely Randomized Design (CRD) with five treatments and three replications. Treatments evaluated were as follows: T1-Unsterilized soil without VAM and fertilizer, T2- Sterilized soil without VAM and fertilizer, T3-Sterilized soil with VAM inoculant, T4-Sterilized soil with VAM inoculant + Fertilizer, and T5-Sterilized soil + Fertilizer.

Significant results were obtained in the average height of plant, stem diameter, leaf number, total fresh weight and shoot fresh weight. Results showed the redundancy of applying fertilizer on the plant already with VAM inoculation. Growth of inoculated seedlings was comparable to those of uninoculated seedlings and with addition of fertilizer. Uninoculated seedlings grown without fertilizer had the slowest rate of plant growth.

TABLE OF CONTENTS

	PAGE
BIOGRAPHICAL DATA	iii
ACKNOWLEDGMENT	iv
ABSTRACT	vi
LIST OF TABLES	. x
LIST OF FIGURES	хi
LIST OF APPENDIX TABLES	xii
INTRODUCTION	1
Statement of the Problem	2
Objectives of the Study	3
Importance of the Study	3
Time and Place of the Study	4
Scope and Limitation of the Study	4
Assumption	4
REVIEW OF RELATED LITERATURE	5
Taxonomic Classification of Jatropha	5
Botanical Description of Jatropha	5
Chemical Composition of Jatropha	6
Toxicity	7
Distribution	7
Ecology	7
Cultivation	8
Vields and Economics	8

Energy	8
Vesicular-arbuscular Mycorrhizae	9
The VAM symbiosis	10
Uses of VAM in Agriculture	11
VAM and Soil Fertility	12
Pre-symbiosis	13
Effects of VAM on Drought and Salinity stress	16
METHODOLOGY	18
Selection of Planting Materials	18
Inoculum preparation	18
Seed Preparation	18
Soil preparation and Sterilization	18
Application of VAM Root Inoculant	18
Application of Complete Fertilizer	19
Care and Maintenance.	19
Data Gathering and Analysis	19
Experimental Design	19
Statistical Analysis	21
Preparation of Root Sample (VAM infection)	21
RESULTS AND DICUSSION	23
Percent Root Infection	23
Morphological Characteristics	28
Physiological Characteristics	34
SUMMARY, CONCLUSION AND RECOMMENDATION	
Summary	40

Conclusion	41
Recommendation	41
BIBLIOGRAPHY	
APPENDICES	53

LIST OF TABLES

Table	Title	Page
1	Amount of biofuel produced by different oil crops (Duke, 1983)	9
2	Mean plant height (cm) of Jatropha seedlings as affected by VAM inoculation and fertilizer application	29
3	Mean stem diameter (cm) of Jatropha seedlings as affected by VAM inoculation and fertilizer application	31
4	Mean number of leaves of Jatropha seedlings as affected by VAM inoculation and fertilizer application.	33
5	Mean total fresh weight (g) of Jatropha seedlings as affected by VAM inoculation and fertilizer application.	35
6	Mean shoot weight (g) of Jatropha seedlings as affected by VAM inoculation and fertilizer application at 75 DAE	36
7	Mean root weight (g) of Jatropha seedlings as affected by VAM inoculation and fertilizer application at 75DAE.	37
8	Mean root-shoot ratio of Jatropha seedlings as affected by VAM inoculation and fertilizer application at 75 DAE	38
9	Mean primary root length (cm) of Jatropha seedlings as affected by VAM inoculation and fertilizer application at 75 DAE	39

LIST OF FIGURES

Figur	e Title	Page
1	Jatropha root sample indicating root infection (black dots) under scanner objective (10x)	24
2	Presence of vesicles in Jatropha root sample indicating VAM fungi infection under low power objective (20x)	25
3	Presence of arum/hyphae and vesicle in Jatropha root sample indicating VAM infection under high power objective (40x)	26

LIST OF APPENDICES TABLES

Appendix Table	Title	Page
1	Analysis of variance of plant height at 15 DAE	54
2	Analysis of variance of plant height at 30DAE	54
3	Analysis of variance of plant height at 45 DAE	54
4	Analysis of variance of plant height at 60 DAE	54
5	Analysis of variance of plant height at 75 DAE	55
6	Analysis of variance of stem diameter at 15 DAE	55
7	Analysis of variance of stem diameter at 30 DAE	55
8	Analysis of variance of stem diameter at 45 DAE	55
9	Analysis of variance of stem diameter at 60 DAE	56
10	Analysis of variance of stem diameter at 75 DAE	56
11	Analysis of variance of leaf number at 15 DAE	56
12	Analysis of variance of leaf number at 30 DAE	56
13	Analysis of variance of leaf number at 45 DAE	57
14	Analysis of variance of leaf number at 60 DAE	57
15	Analysis of variance of leaf number at 75 DAE	57
16	Analysis of variance of total fresh weight at 75 DAE	57
17	Analysis of variance of shoot fresh weight at 75 DAE	58
18	Analysis of variance of root fresh weight at 75 DAE	58
19	Analysis of variance of root-shoot ratio at 75 DAE	58
20	Analysis of variance of primary root length at 75 DAE	58

EFFECTS OF VESICULAR ARBUSCULAR MYCORRHIZAL ROOT INOCULANT ON THE GROWTH OF JATROPHA (Jatropha curcas) SEEDLINGS $^{1/2}$

Glen Lino Gegantoca Guañezo

Undergraduate thesis manuscript presented to the faculty of the Department of Biological Sciences of Cavite State University in partial fulfillment of the requirements for graduation with the degree of Bachelor of Science in Biology. Department Contribution No.______. Prepared under the supervision of Dr. Yolanda A. Ilagan.

INTRODUCTION

Jatropha (Jatropha curcas) is an oil producing plant which is also known in the Philippines as Tuba-tuba or Tubang-bakod, and physic nut in English (Philippine Herbal Medicine Site, 2006). The botanic name "Jatropha" is derived from the Greek word "Jatras" meaning doctor and "trophe" which means nutrition. Locally, it is grown as a boundary fence or live hedge and can be used to reclaim eroded areas (Heller, 1996; Joker and Jepsen, 2003). The plant grows to about 3 m and can be grown practically anywhere (ordinary soil, sandy, gravely or rocky soil). Furthermore, it adapts easily to different climatic conditions and is drought resistant. It can stand up to two years without rainfall and produces seeds up to 30 years. The tree also has a short gestation period, bears several fruits starting six months after planting and reaches full fruit bearing capacity in one to two years (Philippine Herbal Medicine Site, 2006).