C88 2005

676,015 LATION AND IDENTIFICATION OF BACTERIA AND FUNGI FROM FHARMACEUTICAL WASTEWATER

THESIS

GINA LORENA CRUZATE MORENA PARRA

College of Arts and Sciences CAVITE STATE UNIVERSITY Indang, Cavite

APRIL 2005

ISOLATION AND IDENTIFICATION OF BACTERIA AND FUNGI FROM PHARMACEUTICAL WASTEWATER

Undergraduate Thesis
Submitted to the Faculty of the
Cavite State University
Indang, Cavite

In partial fulfillment of the requirements for the degree of Bachelor of Science in Biology (Major in Microbiology)

Isolation and identification of bacteria and fungi from pharmaceutical wastewater 676.015 C88 2005 T-3095

GINA LORENA CRUZATE MORENA PARRA April 2005

ABSTRACT

CRUZATE, GINA LORENA PEREZ and PARRA, MORENA LANDICHO. Isolation and Identification of Bacteria and Fungi from Pharmaceutical Wastewater. Undergraduate Thesis, Bachelor of Science in Biology, major in Microbiology. Cavite State University Indang, Cavite. April 2005

Adviser: Dr. Yolanda A. Ilagan.

This study was conducted to characterize wastewater samples, and isolate and identify different bacteria and fungi from wastewater.

The samples were taken from wastewater from two pharmaceutical companies, namely EUROMED and BAXTER. These samples exhibited whitish to yellow color with gray or black precipitates. The pH was neutral ranging from 6.96 to 7.01. Direct-EUROMED gave the highest bacterial count while River-BAXTER gave the highest fungal count. It was noted that the pH of the samples did not affect the growth of bacteria and fungi.

Bacillus, Arthrobacter, Kurthia, Brevibacterium, Microbacterium, Cellulomonas, Alcaligenes, Xanthomonas, Acetobacter, Flavobacterium, Escherichia, Shigella and Salmonella. Among these, Micrococcus, Flavobacterium and Xanthomonas were the most predominant being present in most of the samples taken. One Actinomycete was also isolated.

Mold isolates belonged to the genera, *Penicillium*, *Cladosporium*, *Helminthosporium* and *Aspergillus*. Meanwhile, majority of the yeast isolates were

identified as Saccharomyces while the rest were Hansenula, Debaryomyces, Torulaspora and Pichia.

TABLE OF CONTENTS

	Page
BIOGRAPHICAL DATA	iii
ACKNOWLEDGMENT	v
ABSTRACT	xiii
LIST OF TABLES	x
LIST OF FIGURES	xi
LIST OF APPENDICES	xii
INTRODUCTION	1
Importance of the Study	2
Statement of the Problem	3
Objectives of the Study	3
Time and Place of the Study	4
Scope and Limitation of the Study	4
REVIEW OF RELATED LITERATURE	5
Characteristics of Wastewater	5
Microorganism in Wastewater	7
Bioremediation	9
Microorganism and Wastewater-Treatment Procedures	12
Harmful Effects of Wastewater	14
METHODOLOGY	16
Material and Media Preparation	16
Sample Collection	16

Characterization of Wastewater Samples	16
Bacterial Isolation	16
Fungal Isolation.	17
Characterization of Bacterial Isolates	17
Physiological Characterization	17
Identification of Bacterial Species	19
Characterization of Mold Isolate	19
Characterization of Yeast Isolate	19
RESULTS AND DISCUSSION	25
Wastewater Samples	25
Bacterial Count	29
pH and Microbial Population	31
Bacterial Isolates	32
Morphological Characteristics	33
Physiological Characteristics	34
Utilization of Sugars and Alcohols	36
Identity of Bacterial Isolates	36
Fungal Isolates	40
Characteristics of Yeast Isolates	42
Physiological Characterization	43
Identity of Yeast Isolates	44
Characteristics of Mold Isolates	45
Identity of Mold Isolates	46

SUMMARY, CONCLUSION AND RECOMMENDATION				
LITERATURE CITED	56			
APPENDICES	60			

LISTS OF TABLES

Table	Title					
1	Sampling Sites where pharmaceutical wastewaters were obtained	25				
2	Characteristics of pharmaceutical wastewater samples	29				
3	Bacterial count of the different wastewater samples when plated on different media	30				
4	Summary of pH, bacterial and fungal count of wastewater samples	32				
5	Number of bacterial isolates obtained from different media	33				
6	Summary of morphological attributes of bacterial isolates from different media	34				
7	Summary of physiological characteristics of the isolates obtained from wastewater samples	35				
8	Summary of the utilization of sugars and sugar alcohol by bacterial isolates from wastewater samples.	36				
9	Summary of the identity of isolates obtained from wastewater samples	37				
10	Fungal count of the different wastewater samples	41				
11	Number of fungal isolates obtained from different media	41				
12	Identity of yeast isolates obtained from pharmaceutical wastewater samples	44				
13	Colony characteristics of mold isolates from pharmaceutical wastewater samples	46				
14	Identity of mold isolates obtained from different pharmaceutical wastewater samples	47				

LIST OF APPENDICES

Appendix	Title	Page
1	Composition and Preparation of Media	61
2	Composition and Preparation of Reagents	65
3	Morphological and physiological characteristics of bacterial isolates	66
4	Utilization of sugars by bacterial isolates	70
5	Identity of bacterial isolates from pharmaceutical wastewater based on their cultural, morphological and physiological characteristics	73
6	Cultural and morphological characteristics of yeast isolates	76
7	Physiological characteristics of yeast isolates	78
8	Identity of yeast isolates from wastewater samples based on their cultural, morphological and physiological characteristics	79
9	Identity of molds isolates from wastewater based on their morphological characteristics	80

ISOLATION AND IDENTIFICATION OF BACTERIA AND FUNGI FROM PHARMACEUTICAL WASTEWATER

GINA LORENA PEREZ CRUZATE MORENA LANDICHO PARRA

	undergraduate								
	College of A								
partial fulfil	lment of the re	quireme	ents for the	degr	ee of	f Bachel	or of	Science in	Biology
major in Microbiology with Contribution No Prepared under						under the			
supervision	of Dr. Yolanda	A. Ilaga	ın.						

INTRODUCTION

Wastewater is the used water supply of a community and consists of domestic waterborne waste, industrial waterborne wastes and ground, surface and atmospheric wastes that enter the sewage system. Sewage system is the one that collects and carries the used water from the source to its ultimate point of the treatment and disposal.

Domestic wastewater consists of approximately 99.9 percent wastes, 0.02 to 0.03 percent suspended solids and other soluble organic and inorganic substances (Pelczar, 1993). Since the composition of wastewater varies, it is expected that the types and numbers of organisms fluctuate. Wastewater may contain millions of bacteria per milliliter including the coliforms, streptococci, anaerobic spore-forming bacilli, the *Proteus* group and other types originating from intestinal tract of human. It may also be a potential source of pathogenic fungi, protozoa, bacteria and viruses (Jensen et al., 1997).

Water pollution is one of the major problems of the economy, nowadays, due to the continuous economic and social activities of man. It is a difficult problem particularly