DIFFERENT PROTOTYPE SOURCES OF ELECTRICITY FOR INSTRUCTIONAL PURPOSES

THESIS

ERICK CHRISTIAN M. BELANO
VICTOR SRIGGLI C. BUENAFÉ

Callege of Engineering and Information Technology

CAVITE STATE UNIVERSITY

Indang, Cavite

April 2016

DIFFERENT PROTOTYPE SOURCES OF ELECTRICITY FOR INSTRUCTIONAL PURPOSES

Undergraduate Thesis
Submitted to the Faculty of the
College of Engineering and Information Technology
Cavite State University
Indang, Cavite

In partial fulfillment of the requirements for the degree Bachelor of Industrial Technology

Different prototype sources of electricity for instructional purposes 621.3 B41 2016 T-6542

ERICK CHRISTIAN M. BELANO VICTOR BRIGOLI C. BUENAFE

April 2016

ABSTRACT

BELANO, ERICK CHRISTIAN M. and BUENAFE, VICTOR BRIGOLI C. Different Prototype Sources of Electricity for Instructional Purposes for Cavite State University. Undergraduate Design Project. Bachelor of Industrial Technology Major in Electrical Technology. Cavite State University, Indang, Cavite. April 2016. Adviser: Mr. Garry M. Cahibaybayan.

The study was conducted to produce different prototype sources of electricity for instructional purposes. It provides knowledge about basic electricity to the students taking any related electrical courses, especially to Electrical Technology. The project was tested and evaluated in terms of user interaction, consistency, efficiency, accuracy and reliability.

The different prototype sources of electricity for instructional purposes were composed of four different prototypes. These were placed in a cabinet made of glass and aluminum frame. Precaution stickers were attached on the doors of the cabinet to be easily read.

Testing of the project was conducted before it was subjected to final evaluation. It was tested by conducting the provided experiment at the electrical laboratory. The experiment was tested with various activities performed by the researcher. The good outcome led to subject the design project for evaluation.

The performance of the project was evaluated and found to be very efficient, reliable and economical to use in any electrical activities of the university. The study satisfied all the objectives and therefore confirmed that it was conducted. However, there were some recommendations to further determine the performance of the project.

TABLE OF CONTENTS

Page
BIOGRAPHICAL DATAiii
ACKOWLEDGMENTiv
ABSTRACTvii
LIST OF TABLESviii
LIST OF FIGURESix
LIST OF APPENDICESx
INTRODUCTION 1
Statement of the Problem
Significance of the Study3
Objectives of the Study
Time and Place of the Study4
Scope and Limitation of the Study
Definition of Terms5
Conceptual Framework of the Study7
REVIEW OF RELATED LITERATURE8
MATERIALS AND METHODS 21
Materials21
Methods
Acquisition of Materials
Construction of Housing
Construction of Different Prototypes

LIST OF TABLES

Table		Page
1	Supplies and materials used for saltwater electricity source	21
2	Supplies and materials used for potato electricity source	22
3	Supplies and materials used for wind turbine electricity source	23
4	Supplies and materials used for solar power electricity source	24
5	Materials and miscellaneous for making the prototypes	25
6	Mean rating of the respondents on the user interaction of the different prototype sources of electricity for instructional purposes	40
7	Mean rating of the respondents on the consistency of the different prototype sources of electricity for instructional purposes	41
8	Mean rating of the respondents on the efficiency of the different prototype sources of electricity for instructional purposes	42
9	Mean rating of the respondents on the accuracy of the different prototype sources of electricity for instructional purposes	43

LIST OF FIGURES

Figure	Pa	ıge
1	Conceptual framework	7
2	Block diagram of saltwater electric source	29
3	Block diagram of potato electric source	29
4	Block diagram of wind turbine electric source	30
5	Block diagram of solar power electric source.	30
6	Perspective view of the cabinet for different prototypes	31
7	Perspective view of saltwater electricity source	31
8	Perspective view of potato electricity source	2
9	Perspective view of wind turbine electricity source	32
10	Perspective view of solar power electricity source	33
11	Gantt chart of different prototype sources of electricity	34

LIST OF APPENDICES

Appendix		Page
1	User's manual	49
2	Activity manual	63
3	Pictures	106
4	Author's profile	113
5	Evaluation sheet	116
6	Forms	177

DIFFERENT PROTOTYPE SOURCES OF ELECTRICITY FOR INSTRUCTIONAL PURPOSES

Erick Christian M. Belano Victor Brigoli C. Buenafe

An undergraduateproject design manuscript submitted to the faculty of the Department of Industrial Engineering and Technology, College of Engineering and Information Technology, Cavite State University, Indang, Cavite in partial fulfillment of the requirements for the degree of Bachelor of Industrial Technology major in Electrical Technology with Contribution No. CEIT-2015-16-2-094. Prepared under the supervision of Mr. Garry M. Cahibaybayan.

INTRODUCTION

Electricity has become one of the basic needs in everyday living. People use electricity constantly in their daily lives to operate technologies such as machines, motors, vehicles, gadgets, and home appliances.

In Benjamin Franklin's time, scientists thought that electricity was a fluid that could have positive and negative charges. But today, it has been proven a fact by scientists that electricity is produced by very tiny particles called electrons and protons. These particles are too small to be seen, but they exist in all materials. To understand how they exist, one must first understand the structure of all matter.

According to a study by the electricity distribution company, Meralco, in the year 2014, Filipino residential consumer's electricity consumption behaviour is parallel to their socio-economic class. The lower the socio-economic class, the lower the consumption. This is due to limitations in spending capacity for purchase of appliances, resulting in