SPONSE OF IR-56 TO DIFFERENT NPK LEVELS UNDER TANZA CONDITION

SPECIAL PROBLEM

By Elena Tadio Astillero

Don Severino Agricultural College Indang, Cavite March, 1983

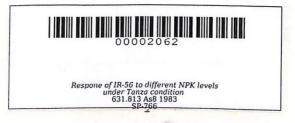
RESPONSE OF IR-56 TO DIFFERENT NPK LEVELS UNDER TANZA CONDITION

A Special Problem

Presented to the Faculty of the

Don Severino Agricultural College

Indang, Cavite


Sp- 766

In Partial Fulfillment of the Requirements

for the Degree of Bachelor of Science

in Agriculture (BSA) Major in

Agronomy

ELENA TADIO ASTILLERO
March, 1983

ABSTRACT

The study, "Response of IR-56 to Different NPK Levels Under Tanza Condition", was conducted at Bagtas, Tanza, Cavite from August to November, 1982. Its main objectives was to know the effects of the different NPK levels on the growth and yield of IR-56 and to know which treatment is best suited for IR-56.

An area of 326 square meter field was irrigated a week before land preparation. Plowing was done once then harrowed immediately to bury the weeds and to puddle the soil. Second harrowing was done a day before transplanting the seedlings to level and puddle the field thoroughly. The field was divided into three replications and further subdivided into four plots to represent the treatments. Different levels of NPK were used and applied basally. The treatments used were: T_1 (40-40-40), T_2 (90-40-40), T_3 (90-90-40), and T_4 (40-40-90).

The result of this study showed that plants fertilized with 90-40-40 NPK level (T_3) gave the highest number of non-productive tillers and highest number of grain per panicle. However, plants fertilized with 40-40-90 NPK level (T_4) gave the highest number of productive tillers, lowest number of non-productive tillers, and longest panicles.

TABLE OF CONTENTS

							Page
BIOGRAPHICAL DATA	• •	•	•	•	•	•	iii
ACKNOWLEDGMENT		•	•	•	•	•	iv
ABSTRACT		•	•	•	•	•	v
LIST OF TABLES		•	•	•	•	•	viii
LIST OF FIGURES		•	•	•	•	•	ix
INTRODUCTION		•	•	•	•	•	1
Importance of the Study		•	•	•	•	•	2
Objectives of the Study	• •	•	•	•	•	•	2
Time and Place of the Study		•	• ,	•	•	•	2
REVIEW OF RELATED LITERATURE		•	•	•	•	•	3
MATERIALS AND METHODS		•	•			• •	6
Materials		•	•	•	•	•	6
Methods		•	•	•	•	•	6
Land preparation		•	•	•	•	•	6
Field layout		•	•	•	•	•	6
Raising of seedlings	• •	•	•	•	•	•	6
Transplanting and replanting							
of seedlings						•	7
Fertilization							7
Weeding						-	7
Irrigating the paddy							8
Control of pest and diseases	• •	•	•	٠	•	•	8

			N .		Page
Harvesting and gathering of data .	•	•	•	•	8
DISCUSSION OF RESULTS	•	•	•	•	9
Average Number of Productive Tillers per Hill	•	•	•	•	9
Average Number of Unproductive Tillers per Hill	•	•	•	•	9
Average Length (cm) of Panicles per Hill	•	•	•	•	12
Average Number of Empty Spikelets per Panicle	•	•	•	•	12
Average Number of Grains per Panicle	•	•	•	•	15
SUMMARY, CONLUSION AND RECOMMENDATION .	•	•	•	•	18
Summary	•	•	•	•	18
Conclusion	•	•	•	•	19
Recommendation	•	•	•	•	19
BIBLIOGRAPHY	•	•	•	•	20
APPENDICES	•	•	•	•	22
Figures	•	•	•		23

LIST OF TABLES

Table		Page
1.	Average Number of Productive Tillers per Hill as Affected by the Different NPK Levels	10
2.	Average Number of Unproductive Tillers per Hill as Affected by the Different NPK Levels	11
3.	Average Length (cm) of Panicles per Hill as Affected by the Different NPK Levels	13
4.	Average Number of Empty Spikelets per Panicle as Affected by the Different NPK Levels	14
5.	Average Number of Grains per Panicle as Affected by Different NPK Levels	16
6.	Computed Yield (cavans) of IR-56 per	17

LIST OF FIGURES

Figure		Page
1.	Field Layout	23
2.	General View of the Experiment	24
3.	Representative Samples of the Experiment	25

RESPONSE OF IR-56 TO DIFFERENT NPK LEVELS UNDER TANZA CONDITION 1

by

Elena T. Astillero

LA Special Problem presented to the faculty of the Don Severino Agricultural College, Indang, Cavite, in partial fulfillment of the requirements for graduation with the degree of Bachelor of Science in Agriculture (BSA), Major in Agronomy. Contribution No. P.S. 83955-029. Prepared in the Plant Science Department under the supervision of Mr. Pedro F. Matel.

INTRODUCTION

Rice (Oryza sativa, Linn.), is one of the leading cereal crops in the world and is the principal food of about more than one-half of the world population. It is the basic food of the inhabitants of the tropical regions with humid climate.

Rice is also a major item in the budget of most consumers and changes in its price have immediate effects on wages and cost of production. Since rice is the staple food of the Filipinos, there is a need of having continuous study on the improvement of its production. The Filipino farmers have all the possibilities of obtaining better yield