DEVELORMENT OF AM ELECTRIC ROLL UP DOOR IN THE DEPARTMENT OF INDUSTRIAL EMGINEERING AND TECHNOLOGY

Design Project

MARK ALEXIS L. MANLOGON
MERVEN C. MARASIGAN

College of Engineering and Information Technology

CAVITE STATE UNIVERSITY

Indung, Cavite

DEVELOPMENT OF AN ELECTRIC ROLL UP DOOR IN THE DEPARTMENT OF INDUSTRIAL ENGINEERING AND TECHNOLOGY

Undergraduate Design Project
Submitted to the Faculty of the
College of Engineering and Information Technology
Cavite State University
Indang, Cavite

In partial fulfilment of the requirements for the degree Bachelor of Industrial Technology Major in Electrical Technology

MARK ALEXIS L. MANLOGON MERVEN C. MARASIGAN May 2017

ABSTRACT

MANLOGON, MARK ALEXIS L. and MARASIGAN, MERVEN C. Development of an Electric Roll Up Door in the Department of Industrial Engineering and Technology. Undergraduate Design Project. Bachelor of Industrial Technology Major in Electrical Technology, Cavite State University, Indang, Cavite May, 2017. Adviser: Prof. Danielito R. Escano.

The study entitled "Development of an Electric Roll Up Door in the Department of Industrial Engineering and Technology" was conducted to develop an electric roll up door for the department from February 2016 up to March 2017. Specifically, it aimed to design an electric roll-up door that can easily move up and down and can be controlled automatically and manually; construct an electric roll-up door using a remote control and push button; test and evaluate the functionality of the electric roll-up door; and to conduct a cost analysis for an electric roll-up door.

The electric roll-up door with a dimension of 178 cm by 350 cm featured two functions; electrical driven and manually operated. Switch, remote control and chain block is used to control the operation to "up" and "down" the rolling door. In case of black out or change power of electricity supply, this design project can be operated manually using metal chain. The door had also a provision of manipulating the roll-up door with the use of remote control; the device was designed to operate within a range of 50 meters.

The researchers had evaluated the design project specifically with 30 participants including students and faculty members in the Department of Industrial Engineering and Technology with a result of an overall average mean of 4.86 (Outstanding). Based from the results of an evaluation the designed project was found beneficial to the participants

including the user, students and the instructors. The design project had a total cost of P34,645.00.

TABLE OF CONTENTS

	Page
APPROVAL SHEET	ii
BIOGRAPHICAL DATA	iii
ACKNOWLEDGEMENT	v
ABSTRACT	vii
LIST OF TABLES	xi
LIST OF FIGURES.	xii
LIST OF APENDIX FIGURES	xiii
LIST OF APPENDICES	xiv
INTRODUCTION	1
Statement of the Problem	2
Objective of the study	3
Significance of the study	3
Time and place of the study	3
Scope and limitation of the study	4
Definition of terms	4
REVIEW OF RELATED LITERATURE	10
METHODOLOGY	19
Materials	19
Methods	20
Canvassing and purchasing	20

Construction of components	21
Installation of components	22
Testing of components	23
Evaluation of components	24
RESULTS AND DISCUSSSION	25
Project description	25
Project structure	26
Motor setting diagram	26
Reality of the project	27
Evaluation of the electric roll up door	30
Degree of level and range.	31
Cost computation	32
SUMMARY, CONCLUSION, AND RECOMMENDATIONS	33
Summary	33
Conclusion	34
Recommendation	34
REFERENCES	35
APPENDICES	36

LIST OF TABLES

Table		Page
1	List of materials used	19
2	Results of evaluation	30
3	Degree of mean range	31
3	Cost of materials spent on the development of the project	32

LIST OF FIGURES

Figure		Page	
1	Research framework	9	
2	Roll up garage door opener	11	
3	Garage door opener remotes	14	
4	Parts of electric roll up door	16	
5	Manual chain	17	
6	Canvassing the materials of prototype	20	
7	Construction of components	21	
8	Installation of components	22	
9	Testing the whole components	23	
10	Remote control	25	
11	Automotive laboratory roll up door	26	
12	The setting diagram of motor	27	
13	Motor wiring diagram	29	

LIST OF APPENDIX FIGURES

Appendix Figure		Page
1	The authors	38
2	Purchased motor	39
3	Design project location	39
4	Rolling door	40
5	Push button	40
6	Attached motor	41
8	Painting process	41
9	Finished design project	42

LIST OF APPENDICES

Appendix		Page
1	Appendix figures	37
2	Evaluation	43
3	Student forms	73

DEVELOPMENT OF AN ELECTRIC ROLL UP DOOR IN THE DEPARTMENT OF INDUSTRIAL ENGINEERING AND TECHNOLOGY

Mark Alexis L. Manlogon Merven C. Marasigan

An undergraduate design project submitted to the faculty of the Department of Industrial Engineering, and Technology, College of Engineering and Information Technology, Cavite State University, Indang, Cavite in partial fulfilment of the requirements for the degree of Bachelor in Industrial Technology Major in Electrical Technology with Contribution No. CEIT 2016-17-2-038. Prepared under the supervision of Mr. Danielito R. Escaño.

INTRODUCTION

Electric roll up door is a large door on a garage that opens either manually or by an electric motor. Garage door are frequently large enough to accommodate automobiles and other vehicles. Small garage doors may be made in a single panel that tilts up and back across the garage ceiling. Larger doors are usually made in several jointed panels that roll up on tracks across the garage ceiling, or into a roll above the doorway. The operating mechanism is spring-loaded or counter balanced to offset the weight of the door and reduce human or motor effort required to operate the door. Less commonly, some garage doors slide or swing horizontally. Doors are made of wood, metal, or loss. Warehouses, bus insulated prevent heat to may be and fiberglass, garages and locomotive sheds have larger versions.

Electric roll up door sectional overhead door is a type of window shutter consisting of many horizontal slats or sometimes bars or web systems hinged together.