DEVELOPMENT OF A SOLAR POWERED MICROSCHIROLLER BASED YEGETABLE GARDEM SPRINKLER

Design Project

JASON JHON B. ALMONTE

Callege of Engineering and Information Technology

CAVITE STATE UNIVERSITY

Indang, Cavita

Cavite State University (Main Library)

DP459

DP 620,0042 Al6 2016

April 2016

VDEVELOPMENT OF A SOLAR POWERED MICROCONTROLLER BASED VEGETABLE GARDEN SPRINKLER

Undergraduate Design Project
Submitted to the Faculty of the
College of Engineering and Information Technology
Cavite State University
Indang, Cavite

In partial fulfillment of the requirements for the degree Bachelor of Industrial Technology

Development of a solar powered microcontroller based vegetable garden 620.0042 Alb 2016 DP459

JASON JHON B. ALMONTE

April 2016

ABSTRACT

ALMONTE, JASON JHON B. Development of Solar Powered Microcontroller Based Vegetable Garden Sprinkler. Undergraduate Design Project. Bachelor of Industrial Technology. Cavite State University, Indang, Cavite. April 2016. Adviser: Ronald E. Araño.

The main objective of this project is to construct and evaluate a solar powered microcontroller based vegetable garden sprinkler. With the availability of the materials, the construction of the designed project was made possible.

Based on the findings of the study, the solar powered microcontroller based vegetable garden sprinkler proved that the design and specification is useful and easy to operate texting and manual function.

To determine the efficiency of the designed project, an evaluation was administered. Based on the evaluation conducted, it was found out that the development of solar powered microcontroller based vegetable garden sprinkler was useful. It was evaluated based on its functionality, workability, efficiency, durability and safety. The overall result of the evaluation is 4.58 which equivalent of Outstanding.

TABLE OF CONTENTS

	Page
BIOGRAPHICAL DATA	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	vi
LIST OF TABLES.	ix
LIST OF FIGURES	x
LIST OF APPENDIX TABLE	xii
LIST OF APPENDIX FIGURES	xiii
LIST OF APPENDICES	xiv
INTRODUCTION	1
Statement of the Problem	2
Significance of the Study	2
Objectives of the Study	3
Time and Place of the Study	4
Scope and Limitation of the Study	4
Definition of Terms	6
REVIEW OF RELATED LITERATURE	9
METHODOLOGY	25
Materials	26
Methods	28
Project design	28
Project development	37

Testing procedure	41
Evaluation procedure	42
RESULT AND DISCUSSION	44
Project description	44
Project Structure	45
Circuit assembly	47
Project capacibilities	51
Project evaluation	52
SUMMARY, CONCLUSION, AND RECOMMENDATIONS	53
REFERENCES	55
APPENDICES	57

LIST OF TABLES

Table		Page
1	Battery state of charge	15
2	Materials that used in constructing and fabricating solar powered microcontroller based vegetable gardensprinkler	25
3	Performance in term of evaluation criteria	43
4	Scale	43

LIST OF FIGURES

Figure		Page
1	Final model of solar photovoltaic cell	10
2	Design solution including backup battery	11
3	Charge controller and battery wiring	12
4	Charger circuit of SBCS	14
5	Gizduino 168 arduino compatible	16
6	Stepper motor using Arduino	19
7	GSM/GPRS module (Shield)	20
8	Project output	21
9	Sprinkler system	23
10	Sprinkler irrigation	24
11	Micro Irrigation	24
12	Conceptual framework	27
13	Isometric view of solar powered microcontroller vegetable garden sprinkler	28
14	Front view of solar powered microcontroller vegetable	28
15	Side view of solar powered microcontroller vegetable	29
16	Top view of solar powered microcontroller vegetable garden sprinkler	29
17	Isometric view of sprinkler base with dimensions	30
18	Isometric view of the rail with dimensions	31
19	Block diagram hardware	32
20	Pictures of materials/modules position	33

21	Flow of program	34
22	Regulator schematic diagram	37
23	Rain and solar axis relay schematic diagram	38
24	Manual timer signal schematic diagram	39
25	Actual view of the designed project	44
26	Actual view of the main device	45
27	Actual view of the sprinkler and railway	46
28	Sprinkler based	46
29	Gizduino168 microcontroller	48
30	GSM/GPRS module	48
31	Solar axis motor	49
32	Power regulator circuit	49
33	Solar tracker circuit	50
34	Manual timer signal circuit	50

LIST OF APPENDIX TABLE

Appendix Table		Page
1	Statistical basis for the project evaluation	66
2	Functionality of solar powered based microcontroller based vegetable garden sprinkler as assessed by the participants.	. 66
3	Workability of solar powered based microcontroller based vegetable garden sprinkler as assessed by the respondents.	. 66
4	Efficiency of solar powered based microcontroller based vegetable garden sprinkler as assessed by the participants	
5	Durability of solar powered based microcontroller based vegetable garden sprinkler as assessed by the participants	
6	Safety of solar powered based microcontroller based vegetable garden sprinkler as assessed by the participants	68
7	Solar powered microcontroller based vegetable garden sprinkler rating	68

LIST OF APPENDIX FIGURES

Appendix Figure		Page
1	Fabrication of the circuit box	63
2	Fabrication of the circuit box	63
3	Painted project	64

LIST OF APPENDICES

Appendix		Page
1	Sample of evaluation form	58
2	Construction of the designed project	61
3	Summary of mean from evaluation	64
4	User manual of the solar powered microcontroller based vegetable garden sprinkler	69
5	Gizduino: Arduino compatible kit manual	75
6	GSM/GPRS shield manual	89
7	Solar charge controller user manual	99
8	Researcher's profile	101

DEVELOPMENT OF A SOLAR POWERED MICROCONTROLLER BASED VEGETABLE GARDEN SPRINKLER

Jason Jhon B. Almonte

An Undergraduate design project submitted to the faculty of the Department of Industrial Engineering and Technology, College of Engineering and Information Technology, Cavite State University, Indang Cavite in partial fulfillment of the requirements for the degree of Bachelor of Industrial Technology major in Electronics Technology with Contribution No.CEIT-2015-16-2-114. Prepared under the supervision of Mr. Ronald E. Araño.

INTRODUCTION

Vegetable is one major source of food for humankind. Through time individuals found many ways to sustain their needs of nutrients through other sources, but still up to now it cannot be doubted that vegetables plays an important role to maintain one's balanced diet cause it contains many essential nutrients such as Vitamins A, B, and C and other minerals.

Farming is the specific process of growing these green leafy vegetables. Time and effort is a must to produce a good harvest. Watering these plants at a specific time per day needs to be observed carefully. This plants needs to restore more water during dry seasons and on rainy seasons, watering is not that much needed.

Today, technology is united with agriculture through water sprinkler automation. The researchers observed that this technology is not present in Cavite State University (CvSU) thus the study entitled "Development of a Solar Powered Microcontroller Based Vegetable Garden Sprinkler" was proposed.