631.36 N76 1999

MENT AND SVALUATION OF A VACUUM-ASSISTED ISSENTIAL OUR EXPRACTOR

MYLENE HAGAPE MORCIO

Callege of Engineering CAVITE STATE UNIVERSITY Indusy, Cavite

April 1999

DEVELOPMENT AND EVALUATION OF A VACUUM-ASSISTED ESSENTIAL OIL EXTRACTOR

An Undergraduate Thesis
Submitted to the Faculty of the
Cavite State University
Indang, Cavite

In Partial Fulfillment of the Requirements for the degree of Bachelor of Science in Agricultural Engineering (major in Farm Power and Machinery)

Development and evaluation of a vacuum-assisted essential oil extractor 631.36 N76 1999 T-1899

MYLENE HAGAPE NORCIO April 1999

ABSTRACT

NORCIO, MYLENE HAGAPE. Cavite State University, Indang, Cavite. April 1999. "DEVELOPMENT AND EVALUATION OF A VACUUM - ASSISTED ESSENTIAL OIL EXTRACTOR". Adviser: Eng'r. Jaime Q. Dilidili.

The study, "Development and Evaluation of a Vacuum - Assisted Essential Oil Extractor" was conducted at Cavite State University, Indang, Cavite from February to March 1999 to determine the effectiveness of a vacuum-assisted distillation process in extracting essential oil.

The machine was composed of the following parts: tank still, vacuum pump, water pump, oil receiver and gas stove.

Results showed that the principle of operation of the whole machine works but it was not able to extract oil from the mango leaves used during the evaluation of the machine.

The oil did not separate with the water.

The cost of the constructed vacuum - assisted essential oil extractor amounted to P15,237.00.

TABLE OF CONTENTS

	Page
BIOGRAPHICAL SKETCH	iii
ACKNOWLEDGMENT	iv
LIST OF FIGURES	x
LIST OF APPENDIX FIGURES	жi
LIST OF APPENDIX TABLE	хii
ABSTRACT	xiii
INTRODUCTION	1
Importance of the Study	3
Objectives of the Study	4
Time and Place of the Study	5
Scope and Limitation of the Study	5
REVIEW OF RELATED LITERATURE	6
MATERIALS AND METHOD	25
Materials	25
Design Requirements	25
Components of Steam Distillation -	
Vacuum Assisted Unit	25
Description of the Machine	26
Plant Materials	31
Preparation for Extraction	31
Testing and Evaluation	32
Data Gathered	33

	Page
Statistical Analysis	33
Cost of Construction	33
RESULTS AND DISCUSSION	34
Preliminary Trials	34
Actual Evaluation Using Mango Leaves	34
Simulation Using Cooking Oil	36
SUMMARY, CONCLUSION AND RECOMMENDATION	37
Summary	37
Conclusion	38
Recommendation	38
BIBLIOGRAPHY	39
APPENDICES	40

LIST OF FIGURES

Figure		Page
1a	Country still for hydro-distillation	9
1b	Field distillation still	9
1e	Improved field distillation unit	11
1 d	Modern distillation still	11
1e	Multi-stage distillation process	14
2	Solvent extraction with breather	17
3	Ucuelle method	17
4	Fractional distillation assembly	20
5	Distillation with cohobation	22
6a	Tank still	27
6b	Condenser	29
7	Cross - sectional view of the vacuum - assisted essential oil extractor	30

LIST OF APPENDIX FIGURES

Figure		Page
1	Photographic view of the designed vacuum - assisted essential oil extractor	41
2	Photographic view of the fresh mango leaves sample	42
3	Photographic view of the manually chopped leaves sample	43

LIST OF APPENDIX TABLE

Table															Page
1	Bill	of	materials		•					•	•		 	 	44

DEVELOPMENT AND EVALUATION OF A VACUUM ASSISTED ESSENTIAL OIL EXTRACTOR 1/

by

MYLENE H. NORCTO

L'An undergraduate thesis presented to the faculty of the Department of Agricultural and Food Engineering, College of Engineering, Cavite State University, Indang, Cavite in partial fulfillment of the requirements for the degree of Bachelor of Science in Agricultural Engineering, major in Farm Power and Machinery. Contribution No. AE - 98-99-261-094. Prepared under the supervision of Eng'r. Jaime Q. Dilidili.

INTRODUCTION

The Philippines is rich in plants containing essential oils of commercial value. Many native plants yield highly-prized essential oils. Nature has blessed the country with fertile soil, tropical climate, and adequate important factors in growing rainfall. These are vegetation and essential oil-bearing plants. Some of these plants that are native to the country, such as Ilang-Ilang, pili and patchouli, have already made their mark in the world of perfunery.