2005

633.73 -RACTION, ISOLATION AND CHARACTERIZATION OF CAFFEINE FROM FOUR VARIETIES OF COFFEE (Coffea sp. L.)

RESEARCH STUDY

ROWEE ANN C. FERNANDEZ KIRSTIE CAMILLE L. FERRE JOSEPHINE JOY E. GALVEZ

CAVITE STATE UNIVERSITY SCIENCE HIGH SCHOOL Indang, Cavite

APRIL 2005

EXTRACTION, ISOLATION AND CHARACTERIZATION OF CAFFEINE FROM FOUR VARIETIES OF COFFEE (Coffee sp. L.)

Research Study Presented to the Faculty of Science High School College of Education Cavite State University Indang, Cavite

In partial fulfillment of the requirements for Graduation

Rowee Ann Castillo Fernandez Kirstie Camille Llanes Ferre Josephine Joy Ersando Galvez

Extraction, isolation and characterization of caffeine from four varieties of coffee 633.73 F39 2005

R-468

April 2005

ABSTRACT

FERNANDEZ, ROWEE ANN C., FERRE, KIRSTIE CAMILLE L., and GALVEZ, JOSEPHINE JOY E., Applied Research III (General Science Curriculum), Cavite State University, Indang, Cavite, April 2005. "EXTRACTION, ISOLATION AND CHARACTERIZATION OF CAFFEINE FROM FOUR VARIETIES OF COFFEE (Coffea sp. L.)". Adviser: Ms. Miriam C. Du.

The study entitled "Extraction, Isolation and Characterization of Caffeine From Four Varieties of Coffee" was conducted at DOST, Taguig, Manila and Physical Science Department, Cavite State University, Indang, Cavite from September 2004 to January 2005. This study aimed to: 1) determine the percentage yield of caffeine from the beans of four varieties of coffee; 2) determine the physical and chemical properties of caffeine from each variety of coffee; 3) determine the Rf values of the caffeine extracted; and 4) determine which variety has the least amount of caffeine.

The percentage yield of caffeine extracted from four varieties of coffee was computed. It was found that the highest percent of crude caffeine (10.55%) was obtained from Arabica variety, while the least (1.62%) was obtained from Liberica variety. Caffeine from Arabica, Excelsa, Liberica and Robusta varieties were subjected to physical and chemical analysis. Results showed that caffeine from four varieties of coffee were slightly soluble in polar solvent but insoluble in non-polar solvent such as ether, benzene and chloroform. The melting points of the caffeine extracts ranged from 229°C to 232°C compared to the caffeine standard that ranged from 235°C to 238°C.

Chemical analysis revealed the presumptive evidence that the extracts obtained were really caffeine because of the white precipitate and shiny substance formed indicating the presence of amine and aldehyde group respectively. Ferric chloride test indicated the absence of tannins.

Thin Layer Chromatography was used to determine the Rf values of the caffeine extracted and to compare it to that of the caffeine standard. Results showed that the Rf values of caffeine from four varieties of coffee were close to each other but were not close to that of caffeine standard. The result could also be due to the uncontrolled condition of the caffeine extracts as stored at room temperature, thus it went partly through oxidation reaction before subjecting to chromatography analysis.

TABLE OF CONTENTS

	Page
BIOGRAPHICAL DATA	iii
ACKNOWLEDGMENT	v
ABSTRACT	vii
LIST OF FIGURES	xi
LIST OF TABLES	xii
LIST OF APPENDICES	xiii
LIST OF PLATES	xiv
INTRODUCTION	1
Statement of the Problem	2
Objectives of the Study	2
Importance of the Study	3
Scope and Limitation of the Study	3
Time and Place of the Study	4
REVIEW OF RELATED LITERATURE	5
Botanical Description of Coffee	5
Description of Four Varieties of Coffee	7
Cultivation	8
Uses of Coffee	10
Chemical Components	11
Decaffeinated Coffee	12
Caffeine	12

LIST OF FIGURES

Figure		Page
1	Schematic diagram for the extraction, isolation, and characterization of caffeine from four varieties of coffee	18
2	TLC of the caffeine standard and the caffeine from four varieties of coffee	25

LIST OF TABLES

Table		Page
1	Crude Caffeine Yield from Four Varieties of Coffee	23
2	Rf Values of Caffeine Extracts	24
3	Rf Value of Caffeine	26
4	Solubility of Caffeine in Different Solvents	26
5	Melting Point of Caffeine	27
6	Amine Test Results	27
7	Aldehyde Test Results	28
8	Tannin Test Results	28

LIST OF APPENDICES

Appendix		Page
1	Computation for Percentage Yield	34
2	Computation for Rf Values	35

LIST OF PLATES

Plate		Page
1	Ground coffee beans of four coffee varieties	37
2	Melting point determination	38
3	Test for the presence of amine	39
4	Test for the presence of aldehyde	40
5	Heating of ground coffee beans	41
6	Addition of lead acetate solution to the heated coffee beans	42
7	Shaking of the separatory funnel	43
8	The distillation set-up	44
9	Caffeine extracted from four varieties of coffee	45

EXTRACTION, ISOLATION AND CHARACTERIZATION OF CAFFEINE FROM FOUR VARIETIES OF COFFEE (Coffea sp.L.)

Rowee Ann C. Fernandez Kirstie Camille L. Ferre Josephine Joy E. Galvez

A research study submitted to the faculty of the Science High School, College of Education, Cavite State University Indang, Cavite in partial fulfillment of the requirements for graduation under the guidance and supervision of Ms. Miriam C. Du.

INTRODUCTION

Coffee is a deciduous tree belonging to the Class Dicotyledonae, subclass Sympetalae or Metachlamydae, and order Rubiales. It is the term applied to trees of the genus *Coffea* that belongs to the botanical family Rubiaceae. The term is also applied to the beans of these trees and to the beverage brewed from them. Family Rubiaceae has some 500 genera and over 6,000 species. Most are tropical trees and shrubs that grow in the storey of forests.

The two most important species with economic importance are *arabica* (Arabica Coffee) which accounts for over 70% of world's production, and *robusta* (Robusta Coffee). Two other species, which are grown on a smaller scale, are *liberica* and *excelsa* (http://www.coffee.com).

Coffee has several biochemical compounds such as alcohol, oil, sugar and caffeine. Different varieties of coffee contain varying amounts of these compounds. Caffeine is an alkaloid that occurs naturally in tea, coffee and in cola. It is also present in