UTILIZATION OF OSYTER AND CLAM SHELLS IN THE MANUFACTURE OF PLOWER VASE

RESEARCH STUDY

DAVE BENEDICT M. JECIEL
ANGELI A. BUCLATIN
MARISSA F. MARASIGAN

CAVITE STATE UNIVERSITY
Indang, Cavite

APRIL 2004

UTILIZATION OF OYSTER AND CLAM SHELLS IN THE MANUFACTURE OF FLOWER VASE

A Research Study Presented to the Faculty of Laboratory School, College of Education, Cavite State University Indang, Cavite

In partial fulfillment of the requirements for graduation

Dave Benedict M. Jeciel Angeli A. Buclafin Marissa F. Marasigan

Utilization of cyster and clam shells in the manufacture of flower vase 731.72 J34 2004 R.437

April 2004

ABSTRACT

BUCLATIN, ANGELI A.; JECIEL, DAVE BENEDICT M.; and MARASIGAN, MARISSA F., Applied Research III (General Science Curriculum), Cavite State University, Indang, Cavite, April 2004, "UTILLIZATION OF OYSTER AND CLAM SHELLS IN THE MANUFACTURE OF FLOWER VASE."

Advisers: Engr. Renato B. Cubilla Prof. Dulce L. Ramos

The study entitled "Utilization of Clam and Oyster Shells in the Manufacture of Flower Vase" was conducted to utilize clam and oyster shells in the manufacture of flower vase. It also aimed to (a) determine which material (oyster or clam or oyster and clam shells) can be used in making flower vases; (b) determine the acceptability of the produced flower vases in terms of physical appearance and breaking strength; and (d) determine the cost of production of flower vases made from oyster and clam shells. The study was conducted at Cavite State University and MSD-ITDI, Department of Science and Technology, Bicutan, Taguig, M.M. from December 2003 to January 2004.

The treatments used in the study were: Treatment 0 40% Red Clay, 10% Chinese Ball Clay, 30% Feldspar and 20% Silica; Treatment 1 40% Red Clay, 10% Chinese Ball Clay, 10% Feldspar, 20% Silica, 10% Oyster shells and 10% Clam shells; Treatment 2 40% Red Clay, 10% Chinese Ball Clay, 20% Feldspar, 20% Silica, 5% Oyster shells, 5% Clam shells; Treatment 3 40% Red Clay, 10% Chinese Ball Clay, 10% Feldspar, 20% Silica and 20% Oyster shells; Treatment 4 40% Red Clay, 10% Chinese Ball Clay, 20% Feldspar, 20% Silica and 10% Oyster shells; Treatment 5 40% Red Clay, 10% Chinese Ball Clay, 10% Feldspar, 10% Silica and 20% Clam shells; Treatment 6 40% Red Clay, 10% Chinese Ball Clay, 10% Feldspar, 20% Silica and 10% Clam shells.

Highly significant results were obtained in the parameters such as general acceptability, texture, color, mass, and density of the flower vase. However, non-significant results were obtained from volume, general acceptability, texture, and color of the flower vase.

In terms of the production cost or economic feasibility, treatments 1, 3, and 5 got the best results.

It was proven that pure clay is still the most advisable material for the manufacture of flower vase, but Treatment 4 or 40% Red Clay, 10% Chinese Ball Clay, 20% Feldspar, 20% Silica and 10% Oyster shells can also be utilized.

TABLE OF CONTENTS

	Page
BIOGRAPHICAL DATA	iii
ACKNOWLEDGEMENT	v
ABSTRACT	vii
LIST OF TABLES	xi
LIST OF APPENDICES	xii
LIST OF PLATES	xiii
INTRODUCTION	1
Statement of the Problem	2
Objectives of the Study	2
Importance of the Study	3
Scope and Limitation of the Study	3
Time and Place of the Study	3
REVIEW OF RELATED LITERATURE	4
METHODOLOGY	14
Materials and Equipment	14
Methods	15
Data Gathering	18
DISCUSSION OF RESULTS	22
Mass, Volume and Density	22
Modulus of Rupture	24

Moisture Content	25			
Production Cost	26			
Color of the Flower Vase	27			
Texture of the Flower Vase	28			
General Acceptability of the Flower Vase	29			
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS				
Summary	30			
Conclusion	31			
Recommendations	31			
LITERATURE CITED	32			
APPENDICES	33			
PLATES				

LIST OF TABLES

Table		Page
1	Red clay, ball clay, feldspar, silica, oyster shells and clam shells content of flower vases	16
2	Mass, volume and density of the flower vases	23
3	Modulus of rupture or breaking strength of the flower vases	24
4	Moisture content of the flower vases	25
5	Production cost of the flower vases	26
6	Color of the flower vases	27
7	Texture of the flower vases	28
8	General acceptability of the flower vases	29

LIST OF APPENDICES

Appendix		Page
A	Mass of flower vases	34
A-1	Anova for mass of flower vases	34
В	Volume of the flower vases	35
B-1	Anova for volume of flower vases	35
C	Density of the flower vases	36
C-1	Anova for density of flower vases	36
D	Moisture content of the flower vases	37
D-1	Anova for moisture content of the flower vases	37
Е	Determination of production cost of ceramics	38
F	Color of the flower vases	41
F-1	Anova for color of the flower vases	41
G	Texture of the flower vases	42
G-1	Anova for texture of the flower vases	42
Н	General acceptability of the flower vases	43
H-1	Anova for general acceptability of the flower vases	43
I	Flowchart of the methodology	44
J	Score sheet	45

LIST OF PLATES

Plate Number Page		
1	Mixing of the materials	
2	Aging of the mixture	
3	Molding of the mixture at the Potter's Wheel	
4	Prepared testing pieces	
5	Weighing of the testing pieces	
6	Boiling of the testing pieces for the moisture content	
7	Testing the breaking strength of the testing pieces at the Universal Testing Machine (UTM)	
8	Retouching of the vase	
9	Oven-drying of the produced ceramics	
10	Firing of the produced ceramics	
11	Crushed treatments after firing at the first conduct 57	
12	Finish products	
13	Finish products after transporting	
14	Painting of the finish products	

UTILIZATION OF OYSTER AND CLAM SHELLS IN THE MANUFACTURE OF FLOWER VASE $^{1\!\!/}$

Buclatin, Angeli A. Jeciel, Dave Benedict M. Marasigan, Marissa F.

¹/A Research Study submitted to the faculty of the Laboratory School, College of Education, Cavite State University, Indang, Cavite in partial fulfillment of the requirements for graduation, prepared under the supervision of Engr. Renato B. Cubilla.

INTRODUCTION

Flower vases are common additions in houses for functional and decorative purposes. Flower vase, which is a type of ceramic, is usually made of feldspar, quartz, sand, iron oxides, alumina and clay. One of its most important ingredients is clay, which can be a mixture of one or more clay minerals with salts or common elements such as iron and calcium.

The high price of such flower vases because of high price of clay materials restricts consumers from purchasing them.

Oysters and clams are mollusks belonging to the class bivalvia are abundant shellfishes that can be found locally. They are edible bivalves with shells that are usually discarded after being eaten. Oyster and clam shells are basically composed of calcium carbonate. Oyster shells were even found to be good fertilizers because they have properties of calcium carbonates, phosphorus, potassium and sulfur. They can also be