ANTIFUNGAL EFFECT OF SELECTED PLANT METHANOLIC EXTRACTS AGAINST Candida albicans and Fusarium oxysporum

THESIS

MARK MHARDHIN M. FRANCIA MARLYN L. MOJICA JETHRO L. PIORES

College of Nursing

CAVITE STATE UNIVERSITY

Indang, Cavite

Cavite State University (Main Library)

THESIS/SP 579.5 F84 2015

October 2015

ANTIFUNGAL EFFECT OF SELECTED PLANT METHANOLIC EXTRACTS AGAINST Candida albicans and Fusarium oxysporum

Undergraduate Thesis
Submitted to the Faculty of the
Department of Medical Technology
College of Nursing
Cavite State University
Indang, Cavite

In partial fulfillment of the requirements for the degree Bachelor of Science in Medical Technology

Antifungal effect of selected plant methanolic extracts against Condida 579.5 F84 2015 T-5896

MARK MHARDHIN M. FRANCIA MARLYN L. MOJICA JETHRO L. PIORES October 2015

ABSTRACT

FRANCIA, MARK MHARDHIN M., MOJICA, MARLYN L., & PIORES, JETHRO L. Antifungal Effect of Selected Plant Methanolic Extracts Against Candida albicans and Fusarium oxysporum. Undergraduate Thesis. Bachelor of Science in Medical Technology. Cavite State University, Indang, Cavite. October 2015. Adviser: Dr. Adelaida E. Sangalang.

The study was conducted at the National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños from April to June 2014. The study generally aimed to compare the levels of antifungal activity of six selected leaf extracts of: *Mangifera indica* (mango), *Averrhoa bilimbi* (kamias), *Psidium guajava* (guava), *Artocarpus heterophyllus* (jackfruit), *Annona muricata* (soursop), and *Carica papaya* (papaya) against *Candida albicans* and *Fusarium oxysporum*.

Plant leaf samples were sent to the University of the Philippines Los Baños Herbarium for authentication. The samples were air dried, ground and extracted using methanol. Candida albicans and Fusarium oxysporum were procured from Philippine National Collection of Microorganisms (PNCM) at the National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños. Antimicrobial assay was done by cylinder-cup technique and results were obtained by measuring the zone of inhibition (mm) after 2 days and 4 days of incubation for Candida albicans and Fusarium oxysporum, respectively.

The methanolic leaf extracts of guava and mango exhibited high antifungal activity against *Candida albicans*. On the other hand, kamias, jackfruit, soursop and papaya have a low antifungal activity. Guava and mango leaf extracts were significantly more effective compared to the four leaf extracts. These plant extracts contained a lot of

active antifungal component, such as, tannins, flavonoid, terpenoids and glycosides. Fusarium oxysporum showed susceptibility to the fungicide used but yielded resistance to the six plant methanolic extracts. The results indicate that the substrate in which each test fungus cleaved different results. C. albicans was significantly inhibited by guava and mango extracts. The extracts can be used as an alternative for the commercial fungicide, such as itraconazole. However, Fusarium oxysporum is resistant to all the six methanolic leaf extracts.

TABLE OF CONTENTS

	Page
BIOGRAPHICAL DATA	iii
ACKNOWLEDGMENT	v
ABSTRACT	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF APPENDIX TABLES	xiv
LIST APPENDIX FIGURES	xv
INTRODUCTION	
Statement of the Problem	3
Objectives of the Study	3
Significance of the Study	4
Scope and Limitation of the Study	4
Time and Place of the Study	4
Definition of Terms	5
REVIEW OF RELATED LITERATURE	9
Mangifera indica	9
Health Benefits of Mangifera indica	9
Phytochemistry of Mangifera indica	10
In vitro antimicrobial activity and the major polyphenol in leaf extract of Mangifera indica	11
Antibacterial Activity of Mangifera indica	12
Averrhoa bilimbi	12

Pharmacological Profile of Averrhoa bilimbi	13
Phytochemistry of Averrhoa bilimbi	14
Psidium guajava	14
Health Benefits of Psidium guajava	15
Phytochemistry of Psidium guajava	16
Antimicrobial properties of guava	17
Evaluation of Antibacterial Activities of Psidium guajava	18
Artocarpus heterophyllus	18
Health Benefits of Artocarpus heterophyllus	19
Phytochemistry of Artocarpus heterophyllus	20
Antimicrobial Compounds from Artocarpus heterophyllus	20
Annona muricata	21
Health benefits of Annona muricata	21
Phytochemistry of Annona muricata	22
Anti-microbial activity of Annona muricata	22
Carica papaya	23
Health Benefits of Carica papaya	24
Phytochemistry of Carica papaya	25
Candida albicans	26
Fusarium oxysporum	27
Cylinder-Plate Method	28
METHODOLOGY	29
Gathering of Materials	29
Sterilization of Materials	29

Plant Collection and Authentication	30
Processing and Extraction of Plant Materials	30
Preparation of the Test Organisms	31
Preparation of Media	31
Preparation of Inoculum	32
Antifungal Assay	33
Clean-up and Disposal	35
Experimental Design and Data Analysis	35
RESULTS AND DISCUSSION	
Assay of the Antifungal Activity of Selected Plant Methanolic Extracts	46
Candida albicans	46
Fusarium oxysporum	49
SUMMARY, CONCLUSION AND RECOMMENDATIONS	
Summary	51
Conclusion	52
Recommendations	53
REFERENCES	54
APPENDICES	

LIST OF TABLES

Γable		Page
1	Zone of inhibition (mm) for Candida albicans as affected by different plant methanolic extracts after 48 hours of incubation	47
2	Antifungal activity of different plant methanolic extracts against Candida albicans after 48 hours of incubation	48
3	Zone of inhibition (mm) for Fusarium oxysporum as affected by different plant methanolic extracts after 4 days of incubation	49
4	Antifungal activity of different plant methanolic extracts against Fusarium oxysporum after 4 days of incubation	50

LIST OF FIGURES

Figure		
1	Schematic Diagram (General Procedure)	36
2	Processing and extraction of plant materials	37
3	Preparation of media (yeast malt extract agar)	38
4	Preparation of media (potato dextrose agar)	39
5	Preparation of inoculum (Candida albicans)	40
6	Preparation of inoculum (Fusarium oxysporum)	41
7	Antifungal assay of Candida albicans (First part)	42
8	Antifungal assay of Candida albicans (Second part)	43
9	Antifungal assay of Fusarium oxysporum (First part)	44
10	Antifungal assay of Fusarium oxysporum (Second part)	45

LIST OF APPENDIX FIGURES

Appendix Figure		Page
1	Drying of leaf samples. (a) guyabano, (b) mango, (c) jackfruit, (d) kamias, (e) guava and (f) papaya	66
2	Grinding of samples	67
3	Preparation of methanolic extracts	68
4	Filtered leaf methanolic extracts	70
5	Antifungal Susceptibility Testing	71
6	Zone of inhibition (Candida albicans)	72
7	Zone of inhibition (Fusarium oxysporum)	73
8	Clean-up and disposal	74

ANTIFUNGAL EFFECT OF SELECTED PLANT METHANOLIC EXTRACTS AGAINST Candida albicans and Fusarium oxysporum

Mark Mhardhin M. Francia Marlyn L. Mojica Jethro L. Piores

An undergraduate thesis manuscript submitted to the faculty of the Department of Medical Technology, College of Nursing, Cavite State University, Indang, Cavite in partial fulfilment of the requirements for graduation with the degree of Bachelor of Science in Medical Technology with Contribution Number SP CON MT No. 2015-07. Prepared under the supervision of Dr. Adelaida E. Sangalang.

INTRODUCTION

The art of medicine consists in amusing the patient while nature cures the disease, truly this the remarkable truth behind the whole idea of medicine. The threat of different public health issues regarding untreatable infections due pathological resistance develop by microorganisms as a result of continuous exposure to the drugs that acts as arsenals of war in the fight against different human pathogens. Fungal infections which is widely disseminated around is one of the emerging concern of public health, thus familiarity of this infection is not only the burden but the long term treatment that is needed to kill it completely. *Candida albicans*, fungi that is specifically a human pathogen that is wide spread among all human beings, having a percentage of 80 in all human population around the globe. They commonly inhibit the gut and clinically cause disease for those who are immune compromised, such as HIV patients, further more they cause two major types of infections local and systemic, sample of local infections that it manifest