DESIGN OF A COMPLEMENTE APPROPRIATE FOR TROPICAL COMPLETES.

YVETTE P. DIMAPILIS ELIGIO T. PERDON JR.

COLLEGE OF ENGINEERING CAVITE STATE UNIVERSITY Indang, Cavite

MARCH 2001

DESIGN OF A GREENHOUSE APPROPRIATE FOR TROPICAL CONDITION

An Undergraduate **DESIGN PROJECT**Submitted to the Faculty of the **CAVITE STATE UNIVERSITY**Indang, Cavite

In partial fulfillment of the requirements for the degree of Bachelor of Science in Civil Engineering

YVETTE PAREDES DIMAPILIS ELIGIO TORRES PERDON JR. March 2001

ABSTRACT

DIMAPILIS, YVETTE P., PERDON, ELIGIO JR. T., Bachelor of Science in Civil Engineering, Cavite State University, Indang, Cavite. April 2001. DESIGN OF A GREENHOUSE APPROPRIATE FOR TROPICAL CONDITION.

Adviser: Engr. Jaime Q. Dilidili

The design project, DESIGN OF A GREENHOUSE APPROPRIATE FOR TROPICAL CONDITION, was conducted at the proponents' residence from October 2000 to March 2001and was evaluated on February 12, 2001, 4:30 to 6:30 PM at the College of Engineering, Cavite State University.

The objectives of the study were to enhance the knowledge learned in design subject and to design a greenhouse with minimum structural members. It also provides specifications on the types and kind of materials to be used in the construction which are locally manufactured.

Ultimate Strength Design method was considered in the analysis of the design of the structural members of the greenhouse. A detailed structural design, architectural drawings, design specification and total project cost was included in the study. A miniature-scaled model of the proposed greenhouse was then provided after the completion of the design process.

Thorough analysis of the design guidelines, specifications and procedures, as well as the internal forces and moments was necessary in the design of a tropical greenhouse The parameters used were carefully studied and determined to avoid waste of time and effort.

The project revealed the principles and considerations in designing a greenhouse.

TABLE OF CONTENTS

	Page	
BIOGRAPHICAL DATA	iii	
ACKNOWLEDGMENT	v	
LIST OF APPENDICES	xiii	
LIST OF TABLES AND FIGURES	xiv	
INTRODUCTION.		
Nature and Importance of the Study	2	
Objectives of the Study	2	
Time and Place of the Study	3	
Limitation of the Study	3	
REVIEW OF RELATED LITERATURE	4	
Detached Houses	4	
Advantages of Detached Houses	7	
Disadvantages of Single Units.	8	
Connected Houses	8	
Shade Houses.	9	
Advantages of Connected Houses	10	
Disadvantages	10	
Framework	11	
Framework Components	11	
Framing Materials.	13	
Foundation	13	

Glazing Materials	14	
METHODOLOGY		
Data gathering	15	
Actual design and computation	17	
Preparation of cost estimate	23	
Preparation of architectural plans, drawings and specifications	26	
Preparation of miniature scaled model	26	
RESULTS AND DISCUSSION		
Data gathering	27	
Design of purlins	28	
Design of truss	28	
Design of posts	28	
Design of beams	29	
Design of column	29	
Design of base plate	30	
Design of footing	31	
Design of bolted connection	31	
Cost estimate	31	
Design specification	32	
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS		
SIBLIOGRAPHY		
APPENDICES		

LIST OF APPENDICES

Appendix		Page
A	Survey Result	39
В	Forces Acting on the Structure	41
C	Design of Purlins	44
D	Design of Truss	49
Е	Design of Posts	55
F	Design of Column	59
G	Design of Base Plate	68
Н	Design of Footing	72
1	Design of Bolted Connection	85
J	Design of Steel Beam	88
K	Design of Steel Column	91
L	Design of Concrete Column	95
M	Design of Base Plate	101
N	Design of Tie Beam	105
O	Design of Footing	111
P	Design of Bolted Connection	116
Q	Cost Estimate	118
R	Specifications	125
S	Tables	134
T	Architectural Plans and Drawings	143
U	STAAD Results	172

LIST OF TABLES AND FIGURES

Table		Page
1	Basic Wind Speed	135
2	Combined Height, Exposure and Gust Factor Coefficient	135
3	Occupancy Requirements	135
4	Pressure Coefficients	136
5	Pipes Properties.	137
6	Philippine Standard Reinforcing Bars	138
7	Concrete Proportion	138
8	Quantity of Plywood Form	138
9	Number of Lateral Ties and Quantity Per Meter Length of Column	139
10	Form for Beam and Girder	140
11	Quantity of Lumber for Scaffolding and Staging.	140
Figure		
1	University Map	141
2	Location Map	142

DESIGN OF A GREENHOUSE APPROPRIATE FOR TROPICAL CONDITION $^{\underline{\prime}}$

Yvette P. Dimapilis Eligio T. Perdon Jr.

¹⁷ An undergraduate design project presented to the faculty of the Department of Civil Engineering, College of Engineering, Cavite State University, Indang, Cavite in partial fulfillment of the requirements for graduation with the degree of Bachelor of Science in Civil Engineering (BSCE) with Contribution No. CE-2000-2001-350-18. Prepared under the supervision of Engineer Jaime Q. Dilidili.

INTRODUCTION

The basic reason for building greenhouse structures is when the outside conditions are not suitable for growing plants. Plant growth and economics are the primary considerations in constructing greenhouses.

Greenhouses are used so that the flowers and plants can be produced continuously throughout the year. The basic function of a greenhouse is to provide a protective environment for crop production. For tropical countries, it serves as a protection from direct heat of sunlight and it provides the temperature necessary for plant growth.

As of now, there is no existing native design of greenhouse here in the Philippines. This is the main reason why importing of greenhouse design together with the materials for construction is needed. This will lead the importers to suffer on high