DESIGN AND DEVELOPMENT OF MULTIPLE CONCENTRATORS FOR PHOTOVOLTAIC POWER GENERATION

Design Project

GLENN R. HERNANDEZ

LAN ROSE AARON F, MENDOZA

College of Engineering and Information Technology

CAVITE STATE UNIVERSITY

Indang, Cavite

DESIGN AND DEVELOPMENT OF MULTIPLE CONCENTRATORS FOR PHOTOVOLTAIC POWER GENERATION

Undergraduate Design Project
Submitted to the Faculty of the
College of Engineering and Information Technology
Cavite State University
Indang, Cavite

In partial fulfillment of the requirements for the degree Bachelor of Science in Electrical Engineering

Design and development of multiple concentrators for photovoltaic power 621.312 H43 2014 DP4411

GLENN R. HERNANDEZ IAN ROSE AARON F. MENDOZA April 2014

ABSTRACT

HERNANDEZ, GLENN R. and MENDOZA, IAN ROSE AARON F., Design and Development of Multiple Concentrators for Photovoltaic Power Generation. Undergraduate Design Project. Bachelor of Science in Electrical Engineering. Cavite State University, Indang, Cavite. April, 2014. Adviser: Engr. Leonardo A. Estero.

The design and development of multiple concentrators for photovoltaic power generation was conducted from the October 2012 until October 2013. The study was conducted to design, develop and construct multiple concentrators for photovoltaic power generation to improve the power accumulated from a photovoltaic panel.

The system was composed of three main concentrators and a solar panel. The concentrators were: the mirror array, Fresnel lens and compound parabolic concentrator. The solar panel was fixed with the compound parabolic concentrator. A 9V battery was used as the power source for the gizduino microcontroller and for the stepper motor installed in the mirror array. The concentrators were place at the rooftop of Engineering Science Building from August 12 to 15 and from September 2 to 5, 2013 to test the accuracy and efficiency of the system at different weather conditions. The data recording was done from 7 am to 5 pm at an interval of 30 minutes.

The design was presented to the thesis adviser, technical critic and research panel during the preliminary evaluation conducted at College of Engineering and Information Technology Building on October, 2013.

The system was evaluated by comparing the data recorded from the solar panel with multiple concentrators and the solar panel directly exposed to sun light. The

efficiency of the project was evaluated by computing the real time average power and compared it to the maximum theoretical power.

TABLE OF CONTENTS

	Page
BIOGRAPHICAL DATA	ii
ACKNOWLEDGMENT	iv
ABSTRACT	vi
LIST OF TABLES	x
LIST OF FIGURES	хi
LIST OF APPENDICES	xii
LIST OF APPENDIX FIGURES	xiii
INTRODUCTION	1
Importance of the Study	2
Objectives of the Study	2
Time and Place of the Study	3
Scope and Limitation of the Study	3
Definition of Technical Terms	4
REVIEW OF RELATED LITERATURE	5
METHODOLOGY	8
Materials	8
Methods	9
Construction of Mirror Array	10
Concstruction of Heliostat	10
Installation of Fresnel Lens	10

Construction of CPC	10
Positioning of Photovoltaic Panel	11
Computation of Efficiency and Power Output	11
Testing and evaluation	11
Cost Computation of the Project	34
RESULTS AND DISCUSSION	12
SUMMARY, CONCLUSION AND RECOMMENDATION	38
Summary	38
Conclusion	39
Recommendations	39
REFERENCES	40
APPENDICES	41

LIST OF TABLES

Table		Page
1	The required angle of depression of mirror array	17
2	The August 12, 2013 data	19
3	The August 13, 2013 data	20
4	The August 14, 2013 data	22
5	The August 15, 2013 data	23
6	The September 2, 2013 data	25
7	The September 3, 2013 data	26
8	The September 4, 2013 data	27
9	The September 5, 2013 data	28
10	The efficiency computation for August, 2013 data	30
11	The efficiency computation for September, 2013 data	31
12	October 1, 2013 data (CPC not included)	33
13	Efficiency computation for October, 2013 data	34
14	Charging rate in 5 minute interval	36
15	The price of multiple concentrator	37

LIST OF FIGURES

Figure		Page
1	The block diagram of the sun light route	12
2	The schematic diagram of motor driver shield and stepper motor	13
3	The mirror array	14
4	The Fresnel lens	15
5	The compound parabolic concentrator	16
6	The angle of depression	. 17
7	The average power from August 12 to 15, 2013	24
8	The average power from September 2 to 5, 2013	. 29
9	Power from October 1, 2013	. 34

LIST OF APPENDICES

Appendix		Page
Α	Appendix Figures	 41
В	Computations	 51
С	Program Listing	 136

LIST OF APPENDIX FIGURES

Appendix A

Appendix Figure		
1	The multiple concentrator	42
2	The mirror array	43
3	The gizduino	44
4	The stepper motor	45
5	The Fresnel lens	46
6	The compound parabolic concentrator	47
7	Actual testing	48
8	Actual testing	49
9	Actual testing	50

LIST OF APPENDIX FIGURES

Appendix A

Appendix Figure		Page
1	The multiple concentrator	42
2	The mirror array	43
3	The gizduino	44
4	The stepper motor	45
5	The Fresnel lens	46
6	The compound parabolic concentrator	47
7	Actual testing	48
8	Actual testing	49
9	Actual testing	50

DESIGN AND DEVELOPMENT OF MULTIPLE CONCENTRATORS FOR PHOTOVOLTAIC POWER GENERATION

GLENN R. HERNANDEZ IAN ROSE AARON F. MENDOZA

An undergraduate thesis manuscript submitted to the faculty of the Department of Computer and Electronics Engineering, College of Engineering and information Technology, Cavite State University, Indang, Cavite in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical Engineering with Contribution No.CEIT-2013-14-030. Prepared under the supervision of Engr. Leonardo A. Estero.

INTRODUCTION

Sunlight has always been a perpetual source of energy. Sun has always been there since the age of human race begun. Using this knowledge as a basis, different inventions and innovations were created.

Converting sunlight into electricity is not economically attractive because of the high cost of solar cells. But using concentrated sunlight reduces the cost of solar power by requiring fewer solar cells to generate a given amount of electricity. Plus, with efficiency less than 20%, today's technology of Photovoltaic (PV) has a lot of room for improvement better usage of this solar energy.

Solar pumped laser is one of the many ways of taking advantage of this massive amount of solar energy. Laser is a group of synchronized photons that when hit the photovoltaic cell, may theoretically produce maximum output wattage.