633.74 V 54 1989

RESPONSE OF CACAO CUTTINGS TO DIFFERENT

ALPHA-NAPTHALENE ACETIC ACID CONCENTRATIONS

AND SOIL MEDIA

RESEARCH
AGRI-SCIENCE CURRICULUM

FERNANDO SABINO VELUZ

DON SEVERINO AGRICULTURAL COLLEGE
INDANG, CAVITE

APRIL 1989

RESPONSE OF CACAO CUTTINGS TO DIFFERENT ALPHA-NAPTHALENE ACETIC ACID CONCENTRATIONS AND SOIL MEDIA

Fernando Sabino Veluz

Study Submitted to the Faculty of the Agricultural Science Department, Don Severino Agricultural College, Indang, Cavite in Partial Fulfillment of the Requirements in Applied Research IV

Applied Research IV

(Agricultural Science Curriculum)

Response of cacao cuttings to different alpha-napthalene acetic acid concentration 633.74 V54 1989

April 1989

ABSTRACT

Veluz, Fernando S., Applied Research IV (Agricultural Science Currilculum), Don Severino Agricultural College, Indang, Cavite, April 1989, Response of Cacao Cuttings to Different Alpha-Napthalene Acetic Acid Concentrations and Soil Media. Adviser: Mrs. Edna A. Vida

The study was conducted to: 1) determine the response of cacao cuttings to different alpha-napthalene acetic acid concentrations and soil media 2) find out which of the different alpha-napthalene acetic acid concentrations and soil media is best suited for cacao cuttings and 3) find out if there is an interaction between the napthalene acetic acid concentrations and soil media

A total of 600 cacao cuttings were used in a Split Plot Design experiment with three (3) replications; four (4) main plot factor (A); and five (5) subplot factor (B). The different factors used were: Main plot Factor (A) - C₁ (Control), C₂ (50 ppm ANAA), C₃ (100 ppm ANAA), C₄(150 ppm ANAA) while the Subplot Factor (B) - M₁ (1 part chicken dung and 3 parts sand), M₂ (1 part compost and 3 parts sand), M₃ (1 part compost and 1 part garden soil), M₄ (1 part garden soil and 1 part sand), M₅ (mixture of equal proportion of sand, garden soil and compost).

This study revealed that 150 ppm ANAA (C_4) and soil media having a mixture of equal proportion of sand, garden soil and compost (M_5) are the best treatment for cacao cuttings since it gave the shortest number of days from planting to rooting, longest roots, highest number of roots and leaves and highest percentage survival. Furthermore, there were significant effects of the concentration of ANAA and soil media on the average length of roots and average number of roots.

TABLE OF CONTENTS

•				Page
BIOGRAPHICAL SKETCH	• • • • • • • •	• • • • •	• • • •	iìi
ACKNOWLEDGEMENT	• • • • • • • •	• • • • •	• • • •	iv
ABSTRACT		• • • • •	• • • •	V
LIST OF TABLES	• • • • • • • •		• • • •	ix
LIST OF APPENDIX TABLES	• • • • • • •	• • • • • •	• • • •	x
LIST OF FIGURES	• • • • • • •	• • • • •	• • • •	хi
INTRODUCTION	• • • • • • • •	• • • • •	• • • •	1
Statement of the Problem	• • • • • • •	• • • • •	• • • •	3
Objectives of the Study	•	• • • • •	••••	3
Time and Place of the Study	• • • • • • •	• • • • •	• • • •	3 ·
REVIEW OF RELATED LITERATURE	• • • • • • •	• • • • •	• • • •	ß
MATERIALS AND METHODS	• • • • • • •	· • • • •	• • • •	8.3
Materials	• • • • • • •	• • • • •	• • • •	8
Methods		•••	• • • •	8
Preparation of the Propagato	r	• • • • •	• • • •	8
Experimental Design		• • • • •	• • • •	8
Preparation of Soil Media		• • • • •	•••,	9
Preparation of Cuttings	• • • • • • •	• • • • • •	• • • •	9
Preparation of Rooting Hormo				9
Planting the Cuttings		• • • • •	••••	9
Shading	•••••	• • • • •	• • • •	10
Watering	• • • • • • •	• • • • •	• • • •	10
Pest and Disease Control		• • • • •	••••	10

	Page
. Data Gathering	10
DISCUSSION OF RESULTS	11
Number of Days from Planting to Rooting	11
Average Length of Roots (cm.) Ten Weeks After	
Planting	14
Average Number of Roots Ten Weeks After	
Planting	17
Average Number of Leaves Ten Weeks After	٠.,
Planting	. 20
Percentage Survival	:323
SUMMARY, CONCLUSION AND RECOMMENDATION	25
Summary	25
Conclusion	26
Recommendation	26
T THERE AND CIMED	39

· LIST OF TABLES

Table		Page
1	Number of Days from Planting To Rooting	12
2	Average Length of Roots (cm.) Ten Weeks After	
	Planting	15
3	Average Number of Roots Ten Weeks After	
•	Planting	18
4	Average Number of Leaves Ten Weeks After	
	Planting	21
5	Percentage Survival	24

LIST OF APPENDIX TABLES

Table		Page
1	Analysis of Variance of the Number of Days	
	from Planting to Rooting	27
2	Analysis of Variance of the Average Length of	
	Roots Ten Weeks After Planting	28
3	Analysis of Variance of the Average Number of	
	Roots Ten Weeks After Planting	29
4	Analysis of Variance of the Average Number of	
	Leaves Ten Weeks After Planting	30
5	Analysis of Variance of the Percentage Survival.	31

LIST OF FIGURES

Figure		Page
1	Experimental Field Layout	32
2	General View of the Study	34
3	Samples taken from cuttings in control planted	
	in different soil media	35
4	Samples taken from cuttings treated with 50	•
	ppm ANAA planted in different soil media	36
5	Samples taken fron cuttings treated with 100	•
	ppm ANAA planted in different soil media	37
6	Samples taken from cuttings treated with 150	
	ppm ANAA planted in different soil media	. 38

RESPONSE OF CACAO CUTTINGS TO DIFFERENT ALPHA-NAPTHALENE ACETIC ACID CONCENTRATIONS AND SOIL MEDIA

by

FERNANDO SABINO VELUZ

A research study submitted to the Faculty of the Agricultural Science Department, Don Severino Agricultural College, Indang, Cavite in Partial Fulfillment of the Requirements in Applied Research IV. Contribution No.

Prepared under the supervision of Mrs. Edna A. Vida.

INTRODUCTION

Cacao, scientifically known as <u>Theobroma cacao</u> Linnaunder the family Sterculiarceas was originated from tropical America. It was introduced here in the Philippines by the Spaniards in 1860. From that time, cacao has become popular in most part of the country.

Cacao can be grown in many areas of the Philippines. It thrives best in lower surface of the lowland forest especially when the condition is warm, shady and humid. It can be raised as a main plantation crop, or planted simply between major crop trees such as coconut.