41

- Francisco de la constitución d

RESPONSE OF SCURSOP (Annona Muriceta) TO MOSTRYLENE

PESEARCH STUDY
APPLIED RESEARCH

DICKSON N. DIMERO
RESIVAL M. FERARR
MIMEL R. NUESIRO

TANCTE STATE EMPLYEES CON Distance Contes

X12099 (2004)

RESPONSE OF SOURSOP (Annona muricata) TO BIOETHYLENE

A Research Study Presented to the Faculty of the Laboratory School College of Education Cavite State University Indang, Cavite

In Partial Fulfillment of the Requirements for Graduation

Response of soursop to bio-ethylene 634.41 D59 2000 R-331

Dickson Novero Dimero Rexival Mariano Feraer Riemel Romanes Nuestro March 2000

ABSTRACT

DIMERO, DICKSON N.; FERAER, REXIVAL M.; NUESTRO RIEMEL R., General Science Curriculum, Cavite State University, Indang, Cavite. March 2000. RESPONSE OF SOURSOP (Annona muricata) TO BIOETHYLENE.

Adviser: Prof. Fe N. Dimero and Prof. Dulce L Ramos.

The study was conducted to determine the effect of bioethylene on the ripening of soursop; to evaluate color, texture, acidity and sweetness of soursop exposed to bioethylene and to compare the rate of ripening of soursop fruits exposed to bioethylene from different sources.

Different sources of bioethylene were used: acacia leaves (T_1) , madre de cacao leaves (T_2) , butterfly leaves (T_3) , and tiessa leaves (T_4) . The effects of such treatments and the control (T0), no bioethylene, were evaluated and compared.

Results of the study revealed that soursop fruits treated with acacia leaves, madre de cacao leaves, butterfly leaves and tiessa leaves ripened two days earlier than the untreated sample. Soursop samples exposed to bioethylene were evaluated to be sweeter and more sour than the untreated sample. Such properties contributed to better acceptability of bioethylene-treated soursop.

TABLE OF CONTENTS

	Page	
BIOGRAPHICAL SKETCH	iii	
ACKNOWLEDGEMENT	V	
ABSTRACT	viii	
LIST OF TABLES	_	
LIST OF FIGURES	xi xii	
LIST OF APPENDIX TABLES	xiii	
INTRODUCTION	1	
Importance of the Study	2	
Statement of the Problem	2	
Objectives	3	
Scope and Limitations of the Problem	3	
REVIEW OF RELATED LITERATURE		
METHODOLOGY	11	
Preparation of Samples	11	
Evaluation of Samples	22	
Determination of Rate of Ripening	22	
Analysis of Data	22	
DISCUSSION OF RESULTS		
Physical Properties	29	
Chemical Properties	30	
Sensory Properties	32	

SUMMARY, CONCLUSION AND RECOMMENDATIONS	
Summary	36
Conclusion	37
Recommendations	37
LITERATURE CITED	38
APPENDIX A SCORE SHEET FOR PHYSICAL EVALUATION	40
APPENDIX B SCORE SHEET FOR SENSORY EVALUATION	41
APPENDIX C RAW DATA	42
APPENDIX D ANALYSIS OF VARIANCE TABLES	45

LIST OF TABLES

Table no.		Page
1	Mean sensory scores for color of soursop samples treated	
	with bioethylene from different sources at different storage	
	period	29
2	Mean scores for texture of soursop samples treated	
	with bioethylene from different sources at different storage	
	periods	30
3	Total soluble solids of soursop samples treated with	
	bioethylene from different sources at different storage	
	period	31
4	pH values of soursop treated with bioethylene from	
	different sources	32
5	Sensory mean scores for aroma of soursop samples treated	
	with bioethylene from different sources at different storage	
	periods	33
6	Sensory mean scores for sweetness of soursop samples	
	treated with bioethylene from different sources at different	
	storage periods	34
7	Sensory mean scores for general acceptability of soursop	
	samples treated with bioethylene from different sources at	
	different storage periods	35

LIST OF FIGURES

Figure no.		Page
1	Selection and handpicking of mature unripe soursop fruits	12
2a	Acacia tree leaves as readily available source of bioethylene	13
2b	Madre de cacao leaves as sources of bioethylene	14
2c	Butterfly leaves as available source of bioethylene	15
2d	Tiesa leaves as a source of bioethylene	16
3a	Untreated soursop	17
3b	Soursop treated with bioethylene from acacia leaves	18
3c	Soursop treated with bioethylene from butterfly leaves	19
3d	Soursop treated with bioethylene from tiesa leaves	20
4	Soursop samples in separate kaings	21
5	Peeling of guyabano samples for chemical analysis	23
6	Blending of fruit pulp for juice extraction	24
7	Determination of percent soluble solids using a refractometer	25
8	Juice extraction prior to pH determination	26
9	Detrmination of pH	27
10	Sensory Evaluation	28

LIST OF APPENDICES

		Page
Appendix A	Score sheet for Physical Evaluation	40
Appendix B	Score Sheet for Sensory Evaluation	41
Appendix C	Raw Data	42
Appendix D	Analysis of Variance Tables	45

RESPONSE OF SOURSOP (Annona muricata) TO BIOETHYLENE

Dickson Novero Dimero Rexival Mariano Feraer Riemel Romanes Nuestro

A research study presented to the faculty of the Laboratory School, College of Education, Cavite State University, Indang, Cavite in partial fulfillment of the requirements for graduation under the Advisory Committee headed by Prof. Fe N. Dimero and Prof. Dulce L. Ramos

INTRODUCTION

Development in postharvest technology for agricultural crops has generated ways and methods of regulating ripening, specifically, in fruits. Ripening can either be delayed or enhanced by regulating the amount of ethylene in fruits. Studies have shown that increase in the amount of ethylene enhances ripening of climacteric fruits while removal or withdrawal of ethylene delays or slows down the ripening process.

The use of bioethylene, ethylene gas produced naturally by leaves and fruits, has been considered as one of the safest and cheapest ways of enhancing ripening of fruits. Bioethylene was proven to significantly speed up ripening of climacteric fruits like bananas, tomatoes and mangoes (Bautista, 1986).