THESIS

MAMANINE ESTRELL D. DOMINGO

Gellege of Arts and Sciences

CAVITE STATE UNIVERSITY

Indong, Cavita

Cavite State University (Main Library)

T6205 THESIS/SP 515 D71 2016

- April 2016

POTENTIAL TOXICITY OF BIGNAI EXTRACT IN MEDIAN LETHAL CONCENTRATION (LC50) USING PROBIT ANALYSIS

Undergraduate Thesis
Submitted to the Faculty of the
College of Arts and Sciences
Cavite State University
Indang, Cavite

In partial fulfilment of the requirements for the degree Bachelor of Science in Applied Mathematics

Potential toxicity of bignai extract in median lethal concentration using probit 515 D71 2016 T-6205

MARIANNE ESTRELL D. DOMINGO April 2016

ABSTRACT

DOMINGO, MARIANNE ESTRELL DIMASOAY. Potential Toxicity of Bignai Extract in Median Lethal Concentration (LC₅₀) using Probit Analysis. Undergraduate Thesis. Bachelor of Science in Applied Mathematics with specialization in Statistics. Cavite State University, Indang, Cavite, April 2016. Adviser: Prof. Antonio V. Cinto.

The study "Potential Toxicity of *Bignai* Extract in Median Lethal Concentration (LC₅₀) using Probit Analysis" was conducted at Cavite State University – Don Severino Dela Alas Campus, Indang, Cavite. Generally, the study provided a model that describes the concentration-response relationship of the lethal activity of *Bignai* extract using probit analysis. Specifically, it aimed to: (1) construct a probit model that would predict probability of subject receptors' lethality given a concentration; (2) test the goodness-of-fit of the estimates and measure the adequacy of the constructed probit model; (3) establish the potential toxicity of *Bignai* extract in terms of median lethal concentration (LC₅₀); and (4) categorize the toxicity level of *Bignai* extract in LC₅₀.

Probit analysis is a statistical tool that is commonly used to determine the relative toxicity of substances. In the study, the method was run by the maximum likelihood estimation using Newton-Raphson Algorithm.

Through probit analysis, the developed probit regression model is given by:

$$v = -3.721 + 3.725x$$

Model validity was tested through the following: goodness of fit test using Pearson's method, model adequacy measure using McFadden's, Cox & Snell's, and

Nagelkerke's formulae, and deviance statistics test. All tests revealed satisfactory results regarding the significance and correctness of the constructed model.

Thus LC₅₀ of *Bignai* leaf extract computed using the probit regression model is established at 9.975 μ g/ml with 95% fiducial limits from 8.871 μ g/ml to 11.830 μ g/ml.

Using the Clarkson's toxicity criterion for the toxicity assessment of plant extracts, *Bignai* extract is classified as highly toxic.

In general, results of the LC₅₀ of *Bignai* provided a pharmacological basis for cytotoxicity, anti-cancer property, and insecticidal potential of the plant which warrants further investigation.

Using the derived model, this study moreover provides relative information on the concentration-response relationship, which are the lethal probabilities given different concentrations of *Bignai* extract.

TABLE OF CONTENTS

	Page
BIOGRAPHICAL DATA	iii
ACKNOWLEDGMENT	
ABSTRACT.	
LIST OF TABLES.	
LIST OF FIGURES.	
LIST OF APPENDICES.	xiv
INTRODUCTION	1
Objectives of the Study	3
Significance of the Study	3
Scope and Limitation of the Study	5
Time and Place of the Study	5
Definition of Terms.	6
REVIEW OF RELATED LITERATURE	
Uses of Plant Exracts	8
Literature Uses of Plant Exracts	8
Toxicity of Plant Extracts	12
Relative Measure of Toxicity in Plant Extracts: The Median Lethal	
Concentration (LC ₅₀)	13
The Bignai Plant (Antidesma bunius)	16
Biological Literatures of <i>Bionai</i>	10

An Overview of Probit Analysis	22	
Probit Analysis in Bioassays and Toxicological Studies	24	
Probit Analysis in Various Fields	27	
Synthesis	29	
METHODOLOGY		
Sources of Data	31	
Probit Analysis.	32	
Data Procedure	33	
The Probit Regression.	33	
Pearson's Goodness-of-Fit Test	35	
Model Adequacy Measures	35	
Deviance Statistics Test	37	
Fiducial Limits	37	
Notes of Interest for Probit Analysis	38	
Toxicity Testing Criterion	38	
RESULTS AND DISCUSSION	40	
Preliminary Data Information	40	
The Regression Equation	43	
Model Adequacy Measures	45	
The Median Lethal Concentration	46	
Toxicity Criterion of Bignai Leaf Extract.	48	
Some implications for the LC ₅₀ of <i>Bignai</i> Leaf Extract	48	
Concentration-response relationship of Bignai extract	49	

SUMMARY, CONCLUSION, AND RECOMMENDATIONS		
Summary	52	
Conclusion	53	
Recommendations	54	
REFERENCES.	55	
APPENDICES.	59	

LIST OF TABLES

Table		Page
1	Columns for the sets of data	33
2	ANOVA table for significance of concentration	41
3	Tukey's comparison of means	42
4	Validity of data information	42
5	Parameter estimates	43
6	Goodness-of-fit-test.	44
7	Model adequacy measures	45
8	Deviance statistics test	46
9	Results of the LC ₅₀	47
10	Concentration-response relationship of <i>Bignai</i> leaf extract	49

LIST OF FIGURES

Figure		Page
1	The Bignai plant	16
2	Probits transformed and log-concentrations for <i>Bignai</i> leaf extracts	41

LIST OF APPENDICES

Appendix		Page
1	Bignai leaf extract raw data	60
2	Bignai leaf extract modified data	63
3	Cell counts and residuals	66
4	Table for transformation of probits	69
5	Request letter for raw data	71

POTENTIAL TOXICITY OF BIGNAI EXTRACT IN MEDIAN LETHAL CONCENTRATION (LC₅₀) USING PROBIT ANALYSIS

MARIANNE ESTRELL D. DOMINGO

Undergraduate thesis submitted to the faculty of the Physical Science Department, College of Arts and Sciences, Cavite State University, Indang, Cavite in partial fulfillment of the requirements for the degree of Bachelor of Science in Applied Mathematics with specialization in Statistics with Contribution No.T-CAS-2016-P____. Prepared under the supervision of Prof. Antonio V. Cinto.

INTRODUCTION

Through the ages, plant extracts have undoubted glorious history as medicinal agents and as other alternative means of various human needs because of their valuable bioactive substances. Subsequently, there is a current shift of interest in these extracts regarding their toxicological properties. Recent studies indicate that some plants used as food sources have mutagenic or genotoxic potential (Tulay & Ozlem, 2007). Then, numerous studies focused on both pharmacology and toxicity of herbals used by humans. Thus, toxicity testing is now paramounting in the screening of newly developed plant products before it can be used.

Plants are generally regarded as safe throughout the world because of the word "natural" implanted unto them. But similarly, both lifesaving items such as water and oxygen can kill in excessive or inappropriate amounts, so the quantity is often an important consideration (Boullata and Nacen 2000; Ernst, 2007). In congruence to this,