

STRUCTURES WORK

Design and Behaviour from Bridges to Buildings

David Yeomans

WILEY Blackwell

How Structures Work

Design and Behaviour from Bridges to Buildings

Second edition

David Yeomans

WILEY Blackwell

This edition first published 2016 © 2016 David Yeomans First edition © David Yeomans 2009.

Registered Office

John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom.

Editorial Offices

9600 Garsington Road, Oxford, OX4 2DQ, United Kingdom.

The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom.

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell.

The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author(s) have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

00077600

Yeomans, David T.

How structures work: design and behaviour from bridges to buildings / David Yeomans. - Second edition.

Includes bibliographical references and index.

ISBN 978-1-119-01227-6 (pbk.)

1. Structural engineering. I. Title.

TA633.Y46 2015

624.1-dc23

2015022633

A catalogue record for this book is available from the British Library.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Set in 10/12pt Minion by SPi Global, Pondicherry, India

Printed in Singapore by C.O.S. Printers Pte Ltd

Contents

Pr	eface	х
1	Brackets and Bridges	1
	Cooper's tragedy	2
	The Forth Bridge	4
	Members in compression	6
	The Quebec Bridge	8
	Forces in a bracket	9
	The design process	13
	Stresses	14
2	Stiffening a Beam – Girder Bridges	16
	The simple truss	22
	Tension trusses	27
	Girder bridges: The Forth Bridge	31
3	Arches and Suspension Bridges	33
	Building an arch	35
	Blackfriars Bridge	37
	Pontypridd Bridge	39
	The forces in an arch	39
	Practical issues	41
	Forces within the arch ring	43
	Edwards's failure	48
	An unexpected failure	49
	Arch with point load	50
	Iron and concrete arches	51
	The suspension bridge	54
	Arches in buildings: Flying buttresses	57
	Arches in walls	60
4	Bringing the Loads to the Ground - The Structural Scheme	63
	Introduction	63
	The alternatives	64
	Nature of the loads	66

	Choices	68
	'Flow of forces' or action and reaction	71
	Describing the structure	73
	Structures are three-dimensional	75
	Statically indeterminate structures	76
5	Safe as Houses? - Walls	79
	Bricks and mortar	81
	Point loads and openings	85
	Cavity walls	88
	Thick walls	90
	Foundation loads	93
	Horizontal loads	94
	Rafter thrusts	98
	Foundation stresses	101
6	Frames - A Problem of Stability	103
	Timber framing	104
	Construction of a barn	108
	Bracing forces	111
	Bending in the post	112
	Light frame construction	113
	The coming of iron	115
	The frame today	122
	The multistorey frame	126
	Columns	130
7	Floors and Beams - Deflections and Bending Moments	134
	The need for science	140
	Floors and deflections	140
	The forces in the beam	142
	Strain	143
	Galileo's cantilever	145
	Finding the stresses	147
	From cantilever to beam	148
	Iron and steel beams	150
	Cast iron	150
	Reinforced concrete beams	153
	Continuous beams	155
	Shear	159
	Two-way floors	160
	Other structures in bending	163
	Prestressing	168

		Contents	ix
8	Providing Shelter - Roofs		173
	Common rafter roofs		174
	Purlin roofs		174
	Longitudinal stability		179
	The roof truss		185
	The coming of iron		188 190
	Three-dimensional roofs		
	Tinee-dimensional foots		192
9	Structures in a Three-Dimensional World		198
	Vaults		198
	The pointed vault		202
	Elaborations on the basic vault form		203
	Building vaults		206
	Domes		207
	Some historical examples		212
	The modern three-dimensional structure		216
	Anticlastic forms		220
	Structures in tension		222
	Structures for their time and place		224
10	Materials and Workmanship		226
	Walling materials		227
	Timber		228
	Iron and steel		229
	Compatibility of materials		233
	Material development and design		234
Appendix: Some Elements of Grammar			235
Glossary			241
Ind	PY		250

HOW STRUCTURES WORK

Design and Behaviour from Bridges to Buildings, Second Edition

David Yeomans

Structural engineering is central to the design of a building. How the building behaves when subjected to various forces – the weight of the materials used to build it, the weight of the occupants or the traffic it carries, the force of the wind, etc. – is fundamental to its stability. The alliance between architecture and structural engineering is therefore critical to the successful design and completion of the buildings and infrastructure that surrounds us. Yet structure is often cloaked in mathematics, which many architects and surveyors find difficult to understand.

How Structures Work has been written to explain the behaviour of structures in a clear way without resorting to complex mathematics. This new edition includes a new chapter on construction materials and significant revisions to and reordering of the existing chapters. It is aimed at all who require a good qualitative understanding of structures and their behaviour and as such will be of benefit to students of architecture, architectural history, building surveying and civil engineering. The straightforward, nonmathematical approach ensures it will also be suitable for a wider audience including building administrators, archaeologists and the interested layman.

Reviews of the first edition

"How Structures Work is the most compelling on structures that I have ever read. And I have read a lot of books on structures."

R. L. Brungraber, Ph.D., P.E.
Simber Framers Guild, December 2009

Timber Framing: Journal of the Timber Framers Guild, December 2009

"The author writes beautifully. It is a user-friendly engaging book to read and one that is very easy to understand. One learns a lot by reading it.... I think it should be a compulsory text for all first year engineering students."

-From a review of the first edition commissioned by the publisher

About the Author

David Yeomans is an engineer, historian and teacher. He has taught in several schools of architecture in the United Kingdom and the United States, has been a consultant on World Heritage Sites and has written widely on the history of building structures.

Also Available

Structures and Construction in Historic Building Conservation Edited by Michael Forsyth Paperback, 978-1-118-91622-3

Barry's Introduction to Construction of Buildings, 3rd Edition Stephen Emmitt and Christopher A. Gorse Paperback, 978-1-118-25542-1 Sustainable Use of Wood in Construction Jim Coulson Paperback, 978-1-118-53966-8

www.wiley.com/go/construction

